login
A358185
Coefficients of x^n/n! in the expansion of (1 - x)*log(1 - x).
0
0, -1, 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000, 25852016738884976640000
OFFSET
0,5
COMMENTS
The negated sequence gives the compositional inverse of 1 - exp(W(-x)) with the principal branch of Lambert's W function.
See A000312 for the two formulas of Vladimir Kruchinin, Sep 15 2010, and Peter Bala, Dec 09 2011. Here stated the other way around.
LINKS
R. J. Mathar, Series of reciprocal powers of k-almost primes, arXiv:0803.0900 [math.NT], (2018) eq (60).
FORMULA
E.g.f.: (1 - x) * log(1 - x).
a(0) = 0, a(1) = -1, a(n) = (n-2)! = A000142(n-2), for n >= 2.
MATHEMATICA
With[{m = 25}, Range[0, m]! * CoefficientList[Series[(1-x) * Log[1-x], {x, 0, m}], x]] (* Amiram Eldar, Nov 14 2022 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x)*log(1-x)), -N) \\ Michel Marcus, Sep 16 2023
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Nov 14 2022
STATUS
approved