OFFSET
0,1
COMMENTS
This equals r0 - 1/6 where r0 is the real root of y^3 - (7/12)*y - 11/27.
The other (complex) roots of 2*x^3 + x^2 - x - 1 are (-1 + w1*(44 + 3*sqrt(177))^(1/3) + w2*(44 - 3*sqrt(177))^(1/3))/6 = -0.6647417704... + 0.4011272787...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex conjugate roots of x^3 - 1.
Using hyperbolic functions these roots are (-1 - sqrt(7)*(cosh((1/3)*arccosh((44/49)*sqrt(7))) - sqrt(3)*sinh((1/3)*arccosh((44/49)*sqrt(7)))*i))/6, and its complex conjugate.
FORMULA
r = (-1 + (44 + 3*sqrt(177))^(1/3) + 7*(44 + 3*sqrt(177))^(-1/3))/6.
r = (-1 + (44 + 3*sqrt(177))^(1/3) + (44 - 3*sqrt(177))^(1/3))/6.
r = (-1 + 2*sqrt(7)*cosh((1/3)*arccosh((44/49)*sqrt(7))))/6.
r = (-1/6) + (2^(2/3)*11^(1/3))/3 * Hyper2F1([-1/6,1/3],[1/2],1593/1936). - Gerry Martens, Nov 08 2022
EXAMPLE
0.82948354095849703967338757839200780762199667228138855017610774449208401039...
MATHEMATICA
RealDigits[x /. FindRoot[2*x^3 + x^2 - x - 1, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Nov 08 2022 *)
PROG
(PARI) (-1/6) + (2^(2/3)*11^(1/3))/3 * hypergeom([-1/6, 1/3], [1/2], 1593/1936) \\ Michel Marcus, Nov 08 2022
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Nov 07 2022
STATUS
approved