login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358181
Decimal expansion of the real root of x^3 - 2*x^2 - x - 1.
3
2, 5, 4, 6, 8, 1, 8, 2, 7, 6, 8, 8, 4, 0, 8, 2, 0, 7, 9, 1, 3, 5, 9, 9, 7, 5, 0, 8, 8, 0, 9, 7, 9, 1, 5, 2, 8, 8, 1, 1, 2, 7, 0, 3, 3, 7, 4, 5, 2, 0, 0, 6, 1, 2, 9, 5, 5, 1, 4, 7, 4, 5, 7, 4, 7, 1, 1, 1, 9, 7, 9, 8, 3, 1, 3, 1
OFFSET
1,1
COMMENTS
This equals r0 + 2/3 where r0 is the real root of y^3 - (7/3)*y - 61/27.
The other roots of x^3 - 2*x^2 - x - 1 are (2 + w1*((61 + 9*sqrt(29))/2)^(1/3) + w2*((61 - 9*sqrt(29))/2)^(1/3))/3 = -0.2734091384... + 0.5638210928...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex conjugate roots of x^3 - 1.
Using hyperbolic functions these roots are (2 - sqrt(7)*(cosh((1/3)*arccosh((61/98)*sqrt(7))) - sqrt(3)*sinh((1/3)*arccosh((61/98)*sqrt(7)))*i))/3, and its complex conjugate.
FORMULA
r = (2 + ((61 + 9*sqrt(29))/2)^(1/3) + 7*((61 + 9*sqrt(29))/2)^(-1/3))/3.
r = (2 + ((61 + 9*sqrt(29))/2)^(1/3) + ((61 - 9*sqrt(29))/2)^(1/3))/3.
r = 2*(1 + sqrt(7)*cosh((1/3)*arccosh((61/98)*sqrt(7))))/3.
r = (2/3) +(2^(2/3)*61^(1/3))/3*Hyper2F1([-1/6,1/3],[1/2],2349/3721). - Gerry Martens, Nov 08 2022
EXAMPLE
2.5468182768840820791359975088097915288112703374520061295514745747111979831...
MATHEMATICA
RealDigits[x /. FindRoot[x^3 - 2*x^2 - x - 1, {x, 2}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Nov 08 2022 *)
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Wolfdieter Lang, Nov 07 2022
STATUS
approved