Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Nov 09 2022 19:19:50
%S 2,5,4,6,8,1,8,2,7,6,8,8,4,0,8,2,0,7,9,1,3,5,9,9,7,5,0,8,8,0,9,7,9,1,
%T 5,2,8,8,1,1,2,7,0,3,3,7,4,5,2,0,0,6,1,2,9,5,5,1,4,7,4,5,7,4,7,1,1,1,
%U 9,7,9,8,3,1,3,1
%N Decimal expansion of the real root of x^3 - 2*x^2 - x - 1.
%C This equals r0 + 2/3 where r0 is the real root of y^3 - (7/3)*y - 61/27.
%C The other roots of x^3 - 2*x^2 - x - 1 are (2 + w1*((61 + 9*sqrt(29))/2)^(1/3) + w2*((61 - 9*sqrt(29))/2)^(1/3))/3 = -0.2734091384... + 0.5638210928...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex conjugate roots of x^3 - 1.
%C Using hyperbolic functions these roots are (2 - sqrt(7)*(cosh((1/3)*arccosh((61/98)*sqrt(7))) - sqrt(3)*sinh((1/3)*arccosh((61/98)*sqrt(7)))*i))/3, and its complex conjugate.
%F r = (2 + ((61 + 9*sqrt(29))/2)^(1/3) + 7*((61 + 9*sqrt(29))/2)^(-1/3))/3.
%F r = (2 + ((61 + 9*sqrt(29))/2)^(1/3) + ((61 - 9*sqrt(29))/2)^(1/3))/3.
%F r = 2*(1 + sqrt(7)*cosh((1/3)*arccosh((61/98)*sqrt(7))))/3.
%F r = (2/3) +(2^(2/3)*61^(1/3))/3*Hyper2F1([-1/6,1/3],[1/2],2349/3721). - _Gerry Martens_, Nov 08 2022
%e 2.5468182768840820791359975088097915288112703374520061295514745747111979831...
%t RealDigits[x /. FindRoot[x^3 - 2*x^2 - x - 1, {x, 2}, WorkingPrecision -> 120]][[1]] (* _Amiram Eldar_, Nov 08 2022 *)
%Y Cf. A088559, A231187, 1 - A160389, A255240.
%K nonn,cons,easy
%O 1,1
%A _Wolfdieter Lang_, Nov 07 2022