login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A231187 Decimal expansion of the length ratio (largest diagonal)/side in the regular 7-gon (or heptagon). 9
2, 2, 4, 6, 9, 7, 9, 6, 0, 3, 7, 1, 7, 4, 6, 7, 0, 6, 1, 0, 5, 0, 0, 0, 9, 7, 6, 8, 0, 0, 8, 4, 7, 9, 6, 2, 1, 2, 6, 4, 5, 4, 9, 4, 6, 1, 7, 9, 2, 8, 0, 4, 2, 1, 0, 7, 3, 1, 0, 9, 8, 8, 7, 8, 1, 9, 3, 7, 0, 7, 3, 0, 4, 9, 1, 2, 9, 7, 4, 5, 6, 9, 1, 5, 1, 8, 8, 5, 0, 1, 4, 6, 5, 3, 1, 7, 0, 7, 4, 3, 3, 3, 4, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The length ratio (largest diagonal)/side in the regular 7-gon (heptagon) is sigma(7) = S(2, rho(7)) = -1 + rho(7)^2, with rho(7) = 2*cos(Pi/7), which is approx. 1.8019377358 (see A160389 for its decimal expansion, and A049310 for the Chebyshev S-polynomials). sigma(7), approx. 2.2469796, is also the reciprocal of one of the solutions of the minimal polynomial C(7, x) = x^3 - x^2 - 2*x + 1 of rho(7) (see A187360), namely 1/(2*cos(3*Pi/7)).
sigma(7) is the limit of a(n+1)/a(n) for n->infinity for the sequences A006054 and A077998 which can be considered as analogs of the Fibonacci sequence in the pentagon. Thus sigma(7) plays in the heptagon the role of the golden section in the pentagon.
See the Steinbach link.
LINKS
Peter Steinbach, Golden Fields: A Case for the Heptagon, Mathematics Magazine, Vol. 70, No. 1, Feb. 1997.
FORMULA
sigma(7) = -1 + (2*cos(Pi/7))^2 = 1/(2*cos(3*Pi/7)).
Equals A116425 -1.
From Geoffrey Caveney, Apr 23 2014: (Start)
sigma(7) = exp(asinh(cos(Pi/7))).
cos(Pi/7) + sqrt(1+cos(Pi/7)^2). (End)
From Peter Bala, Oct 12 2021: (Start)
Minimal polynomial x^3 - 2*x^2 - x + 1.
Equals 2*(cos(3*Pi/7) - cos(6*Pi/7)). The other zeros of the minimal polynomial are 2*(cos(Pi/7) - cos(2*Pi/7)) = A255240 and 2*(cos(5*Pi/7) - cos(10*Pi/7)) = 1 - A160389.
The quadratic mapping z -> z^2 - 2*z cyclically permutes the zeros of the minimal polynomial. The inverse cyclic permutation is given by the mapping z -> 2 + z - z^2.
Equals Product_{n >= 0} (7*n+3)*(7*n+4)/((7*n+1)*(7*n+6)) = 1 + Product_{n >= 0} (7*n+3)*(7*n+4)/((7*n+2)*(7*n+5)) = 1 + A255249 = 1/A255241. (End)
Equals 1/(2*sin(Pi/14)) = 1 + 2*sin(3*Pi/14). - Gary W. Adamson, Jun 25 2022
Equals (2*cos(Pi/7)) * (2*cos(2*Pi/7)) = (i^(2/7) + i^(-2/7)) * (i^(4/7) + i^(-4/7)) = 1 + i^(4/7) + i^(-4/7). - Gary W. Adamson, Jul 16 2022
EXAMPLE
2.24697960371746706105000976800847962126454946179280421073109887819...
MATHEMATICA
First[RealDigits[N[Csc[Pi/14]/2, 104]]] (* Stefano Spezia, Jun 26 2022 *)
CROSSREFS
Sequence in context: A001010 A357952 A091966 * A055529 A337723 A222735
KEYWORD
nonn,cons,easy
AUTHOR
Wolfdieter Lang, Nov 21 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 11 01:12 EDT 2024. Contains 372388 sequences. (Running on oeis4.)