login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356219
Intersection of A001952 and A003151.
2
284, 287, 289, 292, 294, 296, 299, 301, 304, 306, 309, 311, 313, 316, 318, 321, 323, 325, 328, 330, 333, 335, 337, 340, 342, 345, 347, 350, 352, 354, 357, 359, 362, 364, 366, 369, 371, 374, 376, 379, 381, 383, 386, 388, 391, 393, 395, 398, 400
OFFSET
1,1
COMMENTS
This is the third of four sequences that partition the positive integers. Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences.
Assume that if w is any of the sequences u, v, u', v', then lim_{n->oo) w(n)/n exists and defines the (limiting) density of w. For w = u,v,u',v', denote the densities by r,s,r',s'. Then the densities of sequences (1)-(4) exist, and
1/(r*r') + 1/(r*s') + 1/(s*s') + 1/(s*r') = 1.
For A356219, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*sqrt(2)) and v(n) = floor((1+sqrt(2))/2)*n), so that r = sqrt(2), s = (1+sqrt(2))/2, r' = (2+sqrt(2))/2, s' = 1 + 1/sqrt(2).
EXAMPLE
(1) u ^ v = (2, 4, 7, 9, 12, 14, 16, 19, 21, 24, 26, 28, 31, 33, ...) = A003151
(2) u ^ v' = (1, 5, 8, 11, 15, 18, 22, 25, 29, 32, 35, 39, 42, ...) = A001954
(3) u' ^ v = (284, 287, 289, 292, 294, 296, 299, 301, 304, 306, ...) = A356219
(4) u' ^ v' = (3, 6, 10, 13, 17, 20, 23, 27, 30, 34, 37, 40, 44, ...) = A003152
MATHEMATICA
z = 200;
r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *)
u1 = Take[Complement[Range[1000], u], z] (* A001952 *)
r1 = 1 + Sqrt[2]; v = Table[Floor[n*r1], {n, 1, z}] (* A003151 *)
v1 = Take[Complement[Range[1000], v], z] (* A003152 *)
t1 = Intersection[u, v] (* A003151 *)
t2 = Intersection[u, v1] (* A001954 *)
t3 = Intersection[u1, v] (* A356219 *)
t4 = Intersection[u1, v1] (* A001952 *)
CROSSREFS
Cf. A001951, A001952, A003151, A003152, A001954, A184922 (results of compositions instead of intersections), A341239 (reversed compositions).
Sequence in context: A263670 A108826 A285890 * A061310 A333930 A259996
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 13 2022
STATUS
approved