login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333930
Larger of recursive amicable numbers pair: numbers m < k such that m = s(k) and k = s(m), where s(k) = A333926(k) - k is the sum of proper recursive divisors of k.
2
284, 378, 2924, 4584, 5564, 16632, 16728, 28752, 30912, 53692, 76084, 69552, 87633, 124155, 139815, 179118, 168730, 225096, 202444, 256338, 245904, 266568, 365084, 389924, 320016, 430402, 391656, 353616, 387720, 393528, 486178, 525915, 555216, 642720, 814698, 682896
OFFSET
1,1
COMMENTS
The terms are ordered according to their lesser counterparts (A333929).
LINKS
EXAMPLE
284 is a terms since A333926(284) - 284 = 220 and A333926(220) - 220 = 284.
MATHEMATICA
recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); s[n_] := recDivSum[n] - n; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, m]], {n, 1, 10^5}]; seq
CROSSREFS
Analogous sequences: A002046, A002953 (unitary), A126166 (exponential), A126170 (infinitary), A292981 (bi-unitary).
Sequence in context: A285890 A356219 A061310 * A259996 A092681 A090789
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 10 2020
STATUS
approved