login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356158
a(n) = gcd(n, A347879(n)).
3
1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 3, 1, 1, 3, 2, 1, 2, 1, 10, 1, 2, 1, 6, 1, 1, 1, 28, 1, 2, 1, 2, 3, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 3, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 5, 2, 1, 1, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 3
OFFSET
1,2
COMMENTS
The fixed points of this sequence is given by the union of {2} and A336702.
FORMULA
a(n) = gcd(n, A347879(n)).
PROG
(PARI)
Abincompreflen(n, m) = { my(x=binary(n), y=binary(m), u=min(#x, #y)); for(i=1, u, if(x[i]!=y[i], return(i-1))); (u); };
Abinprefix(n, k) = { my(digs=binary(n)); fromdigits(vector(k, i, digs[i]), 2); };
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
A348040sq(x, y) = Abincompreflen(A156552(x), A156552(y));
A348041sq(x, y) = A005940(1+Abinprefix(A156552(x), A348040sq(x, y)));
A347879(n) = A348041sq(n, sigma(n));
A356158(n) = gcd(n, A347879(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 30 2022
STATUS
approved