login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356155
The pi-based arithmetic derivative applied to prime shift array: Square array A(n,k) = A258851(A246278(n,k)), read by falling antidiagonals.
4
1, 4, 2, 7, 12, 3, 12, 19, 30, 4, 11, 54, 41, 56, 5, 20, 26, 225, 79, 110, 6, 15, 87, 58, 588, 131, 156, 7, 32, 37, 310, 94, 1815, 193, 238, 8, 33, 216, 69, 861, 162, 3042, 269, 304, 9, 32, 140, 1500, 117, 2156, 218, 6069, 355, 414, 10, 21, 120, 427, 5488, 183, 3835, 314, 8664, 491, 580, 11, 52, 44, 455, 1254, 26620, 255, 6834, 422, 14283, 629, 682, 12
OFFSET
1,2
COMMENTS
Each column is strictly monotonic.
EXAMPLE
The top left corner of the array:
k = 1 2 3 4 5 6 7 8 9 10 11 12
2k = 2 4 6 8 10 12 14 16 18 20 22 24
-----+--------------------------------------------------------------------------
n= 1 | 1, 4, 7, 12, 11, 20, 15, 32, 33, 32, 21, 52,
2 | 2, 12, 19, 54, 26, 87, 37, 216, 140, 120, 44, 351,
3 | 3, 30, 41, 225, 58, 310, 69, 1500, 427, 455, 86, 2075,
4 | 4, 56, 79, 588, 94, 861, 117, 5488, 1254, 1022, 132, 8183,
5 | 5, 110, 131, 1815, 162, 2156, 183, 26620, 2561, 2717, 214, 31581,
6 | 6, 156, 193, 3042, 218, 3835, 255, 52728, 4828, 4316, 304, 67093,
7 | 7, 238, 269, 6069, 314, 6834, 373, 137564, 7695, 8075, 404, 154615,
8 | 8, 304, 355, 8664, 422, 10241, 457, 219488, 12098, 12426, 524, 261003,
9 | 9, 414, 491, 14283, 532, 17296, 609, 438012, 20909, 18653, 668, 535877,
10 | 10, 580, 629, 25230, 718, 27231, 787, 975560, 29388, 31552, 836, 1050409,
PROG
(PARI)
up_to = 78;
A246278sq(row, col) = if(1==row, 2*col, my(f = factor(2*col)); for(i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])+(row-1))); factorback(f));
A258851(n) = (n*sum(i=1, #n=factor(n)~, n[2, i]*primepi(n[1, i])/n[1, i])); \\ From A258851
A356155sq(row, col) = A258851(A246278sq(row, col));
A356155list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A356155sq(col, (a-(col-1))))); (v); };
v356155 = A356155list(up_to);
A356155(n) = v356155[n];
CROSSREFS
Cf. A000027 (column 1), A097240 (column 3), A246278, A258851.
Cf. also A344027.
Sequence in context: A257502 A201207 A151890 * A227352 A255140 A108167
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jul 29 2022
STATUS
approved