Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Aug 04 2022 22:27:14
%S 1,2,1,2,1,6,1,2,1,2,1,3,1,1,3,2,1,2,1,10,1,2,1,6,1,1,1,28,1,2,1,2,3,
%T 2,1,2,1,1,1,1,1,3,1,1,3,2,1,3,1,2,1,2,1,2,1,1,1,1,1,3,1,1,1,2,5,2,1,
%U 1,3,2,1,2,1,1,1,1,1,1,1,5,1,1,1,1,1,1,3,1,1,3,1,1,1,2,1,3,1,2,1,2,1,2,1,1,3
%N a(n) = gcd(n, A347879(n)).
%C The fixed points of this sequence is given by the union of {2} and A336702.
%H Antti Karttunen, <a href="/A356158/b356158.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F a(n) = gcd(n, A347879(n)).
%o (PARI)
%o Abincompreflen(n, m) = { my(x=binary(n),y=binary(m),u=min(#x,#y)); for(i=1,u,if(x[i]!=y[i],return(i-1))); (u);};
%o Abinprefix(n,k) = { my(digs=binary(n)); fromdigits(vector(k,i,digs[i]),2); };
%o A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
%o A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
%o A348040sq(x,y) = Abincompreflen(A156552(x), A156552(y));
%o A348041sq(x,y) = A005940(1+Abinprefix(A156552(x),A348040sq(x,y)));
%o A347879(n) = A348041sq(n,sigma(n));
%o A356158(n) = gcd(n, A347879(n));
%Y Cf. A000203, A336702, A347879, A348040, A348041.
%Y Cf. also A356156, A356157, A356308.
%K nonn
%O 1,2
%A _Antti Karttunen_, Jul 30 2022