login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354036
a(n) = 1 if n is odd and sigma(n^2) == 1 (mod 4), otherwise 0.
3
1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = A000035(n) * [A010873(A065764(n)) == 1], where [ ] is the Iverson bracket.
a(n) = A000035(n) - A354035(n).
MATHEMATICA
a[n_] := If[OddQ[n] && Mod[DivisorSigma[1, n^2], 4] == 1, 1, 0]; Array[a, 100] (* Amiram Eldar, May 16 2022 *)
PROG
(PARI) A354036(n) = ((n%2)&&1==(sigma(n*n)%4));
CROSSREFS
Characteristic function of A354039.
Sequence in context: A285142 A267525 A014429 * A284948 A011637 A016229
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 16 2022
STATUS
approved