login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351975
Numbers k such that A037276(k) == -1 (mod k).
1
1, 6, 14, 18, 48, 124, 134, 284, 3135, 4221, 9594, 16468, 34825, 557096, 711676, 746464, 1333334, 2676977, 6514063, 11280468, 16081252, 35401658, 53879547, 133333334, 198485452, 223856659, 1333333334, 2514095219, 2956260256, 3100811124, 10912946218, 19780160858
OFFSET
1,2
COMMENTS
Numbers k such that the concatenation of prime factors of k is 1 less than a multiple of k.
Contains 2*m for m in A093170.
Terms k where k-1 is prime include 6, 14, 18, 48 and 284. Are there others?
LINKS
EXAMPLE
a(4) = 48 is a term because 48=2*2*2*2*3 and 22223 == -1 (mod 48).
MAPLE
tcat:= proc(x, y) x*10^(1+ilog10(y))+y end proc:
filter:= proc(n) local F, t, i;
F:= map(t -> t[1]$t[2], sort(ifactors(n)[2], (a, b)->a[1]<b[1]));
t:= F[1];
for i from 2 to nops(F) do
t:= tcat(t, F[i])
od;
t mod n = n-1
end proc:
filter(1):= true:
select(filter, [$1..10^8]);
PROG
(Python)
from sympy import factorint
def A037276(n):
if n == 1: return 1
return int("".join(str(p)*e for p, e in sorted(factorint(n).items())))
def afind(limit, startk=1):
for k in range(startk, limit+1):
if (A037276(k) + 1)%k == 0:
print(k, end=", ")
afind(10**6) # Michael S. Branicky, Feb 27 2022
# adapted and corrected by Martin Ehrenstein, Mar 06 2022
(Python)
from itertools import count, islice
from sympy import factorint
def A351975_gen(startvalue=1): # generator of terms >= startvalue
for k in count(max(startvalue, 1)):
c = 0
for d in sorted(factorint(k, multiple=True)):
c = (c*10**len(str(d)) + d) % k
if c == k-1:
yield k
A351975_list = list(islice(A351975_gen(), 10)) # Chai Wah Wu, Feb 28 2022
CROSSREFS
Sequence in context: A053474 A072204 A037177 * A255217 A048747 A175678
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Feb 26 2022
EXTENSIONS
a(24)-a(25) from Michael S. Branicky, Feb 27 2022
Prepended 1 and more terms from Martin Ehrenstein, Feb 28 2022
STATUS
approved