login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255217
Primorial mod sum-of-primes.
4
0, 1, 0, 6, 14, 18, 52, 0, 70, 90, 50, 98, 0, 148, 82, 150, 110, 453, 450, 213, 262, 637, 0, 69, 530, 129, 1106, 339, 1110, 1416, 1290, 1443, 994, 30, 2274, 933, 646, 0, 0, 168, 0, 3234, 0, 786, 2014, 3270, 1680, 0, 1222, 0, 1070, 690, 0, 2934, 416, 0, 0, 0, 708
OFFSET
1,4
COMMENTS
Does 0 appear infinitely often in this sequence? See A051838.
LINKS
FORMULA
a(n) = prime(n)# mod A007504(n).
EXAMPLE
For n = 4, a(4) = (2*3*5*7) mod (2+3+5+7) = 210 mod 17 = 6.
MATHEMATICA
Table[Mod[Product[Prime[i], {i, n}], Sum[Prime[i], {i, n}]], {n, 60}] (* Ivan N. Ianakiev, Apr 25 2015 *)
With[{pr=Prime[Range[60]]}, Mod[#[[1]], #[[2]]]&/@Thread[{FoldList[ Times, pr], Accumulate[pr]}]] (* Harvey P. Dale, Jan 22 2016 *)
PROG
(PARI) a(n) = my(vp=primes(n)); vecprod(vp) % vecsum(vp); \\ Michel Marcus, Dec 05 2021
(PARI) lista(nn) = {my(s=0, p=1); forprime(q=2, nn, s += q; p *= q; print1(p%s, ", "); ); } \\ Michel Marcus, Dec 05 2021
CROSSREFS
Cf. A002110 (Primorial numbers), A007504 (Sum of first n primes)
Sequence in context: A072204 A037177 A351975 * A048747 A175678 A173870
KEYWORD
nonn,easy
AUTHOR
Walter Carlini, Apr 25 2015
EXTENSIONS
More terms from Michel Marcus, Apr 25 2015
STATUS
approved