login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255220
Number of (n+2)X(n+2) 0..1 arrays with no 3x3 subblock diagonal sum 0 and no antidiagonal sum 0 and no row sum 2 and no column sum 2
0
23, 28, 46, 70, 106, 160, 238, 352, 520, 766, 1126, 1654, 2428, 3562, 5224, 7660, 11230, 16462, 24130, 35368, 51838, 75976, 111352, 163198, 239182, 350542, 513748, 752938, 1103488, 1617244
OFFSET
1,1
COMMENTS
Diagonal of A255228
FORMULA
Empirical: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4) for n>5.
Empirical g.f. 23*x -2*x^2*(-14+5*x-3*x^2+8*x^3) / (x-1) / (x^3+x-1) . - R. J. Mathar, Nov 09 2018
Empirical: a(n) = -8 +6*(3*A000930(n) + A000930(n-1) +2*A000930(n-2)) for n>1. - R. J. Mathar, Nov 09 2018
EXAMPLE
Some solutions for n=4
..1..0..0..1..0..0....0..0..0..0..1..0....1..1..1..1..1..1....0..0..0..0..0..1
..1..0..0..1..0..0....0..0..0..0..1..0....0..0..1..0..0..1....0..0..0..0..0..1
..1..0..0..1..0..0....1..1..1..1..1..1....0..0..1..0..0..1....1..1..1..1..1..1
..1..0..0..1..0..0....0..0..0..0..1..0....0..0..1..0..0..1....0..0..0..0..0..1
..1..0..0..1..0..0....0..0..0..0..1..0....1..1..1..1..1..1....0..0..0..0..0..1
..1..1..1..1..1..1....1..1..1..1..1..1....0..0..1..0..0..1....1..1..1..1..1..1
CROSSREFS
Sequence in context: A219259 A116224 A127495 * A060703 A061753 A166063
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 17 2015
STATUS
approved