login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255221
Number of (n+2) X (1+2) 0..1 arrays with no 3 x 3 subblock diagonal sum 0 and no antidiagonal sum 0 and no row sum 2 and no column sum 2.
1
23, 22, 31, 43, 61, 88, 127, 184, 268, 391, 571, 835, 1222, 1789, 2620, 3838, 5623, 8239, 12073, 17692, 25927, 37996, 55684, 81607, 119599, 175279, 256882, 376477, 551752, 808630, 1185103, 1736851, 2545477, 3730576, 5467423, 8012896, 11743468
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) for n>5.
Empirical g.f.: x*(23 - 24*x + 10*x^2 - 20*x^3 + 7*x^4) / ((1 - x)*(1 - x - x^3)). - Colin Barker, Dec 19 2018
EXAMPLE
Some solutions for n=4:
..1..1..1....0..1..0....1..0..0....0..0..0....1..0..0....0..1..0....1..1..1
..1..0..0....1..1..1....1..0..0....0..0..0....1..0..0....0..1..0....0..0..1
..1..0..0....0..1..0....1..0..0....1..1..1....1..0..0....1..1..1....0..0..1
..1..1..1....0..1..0....1..0..0....0..0..0....1..0..0....0..1..0....0..0..1
..1..0..0....0..1..0....1..0..0....0..0..0....1..0..0....0..1..0....1..1..1
..1..0..0....0..1..0....1..0..0....1..1..1....1..1..1....1..1..1....0..0..1
CROSSREFS
Column 1 of A255228.
Sequence in context: A004464 A255228 A374669 * A072135 A204633 A010862
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 17 2015
STATUS
approved