login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374669
a(n) is the least number with n prime factors (counted with multiplicity) that is the concatenation of two primes.
2
23, 22, 27, 132, 32, 729, 192, 2112, 1792, 5632, 3072, 59392, 64512, 90112, 110592, 950272, 2260992, 3244032, 786432, 30277632, 7340032, 23068672, 12582912, 494927872, 1333788672, 1375731712, 704643072, 3892314112, 1879048192, 37446746112, 27380416512, 196494753792, 30064771072, 94489280512
OFFSET
1,1
LINKS
EXAMPLE
a(4) = 132 because 132 = 2^2 * 3 * 11 is the product of 4 primes (counted with multiplicity) and is the concatenation of the two primes 13 and 2.
MAPLE
cp:= proc(n) local k;
if n::even then n mod 10 = 2 and isprime((n-2)/10)
elif n mod 5 = 0 then isprime((n-5)/10)
else for k from 1 to ilog10(n) do
if isprime(n mod 10^k) and isprime(floor(n/10^k)) then return true fi
od;
false
fi
end proc:
f:= proc(n) uses priqueue; local pq, p, q, T, TP, j, v;
initialize(pq);
insert([-2^n, 2$n], pq);
do
T:= extract(pq);
v:= -T[1];
if cp(v) then return(v) fi;
q:= T[-1];
p:= nextprime(q);
for j from n+1 to 2 by -1 do
if T[j] <> q then break fi;
TP:= [T[1]*(p/q)^(n+2-j), op(T[2..j-1]), p$(n+2-j)];
insert(TP, pq)
od od;
end proc:
map(f, [$1..30]);
CROSSREFS
Cf. A001222. Second column of A374376.
Sequence in context: A023465 A004464 A255228 * A255221 A072135 A204633
KEYWORD
nonn,base
AUTHOR
Robert Israel, Jul 15 2024
STATUS
approved