login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374671
Positive numbers k such that k! and (k+1)! have an equal number of infinitary divisors.
4
8, 19, 23, 44, 45, 57, 67, 76, 80, 83, 84, 85, 105, 107, 116, 120, 123, 140, 141, 146, 158, 161, 165, 174, 177, 187, 201, 208, 214, 225, 235, 239, 241, 243, 244, 246, 247, 263, 269, 272, 277, 284, 297, 309, 315, 321, 322, 325, 337, 339, 341, 342, 344, 360, 363
OFFSET
1,1
COMMENTS
Positive numbers such that k! and (k+1)! have an equal number of Fermi-Dirac factors (A064547).
Positive numbers k such that A037445(k!) = A037445((k+1)!).
Positive numbers k such that A064547(k!) = A064547((k+1)!).
Positive numbers k such that A177329(k) = A177329(k+1).
LINKS
EXAMPLE
8 is a term since A037445(8!) = A037445(9!) = 64.
MATHEMATICA
s[n_] := s[n] = Module[{e = FactorInteger[n!][[;; , 2]]}, Sum[DigitCount[e[[k]], 2, 1], {k, 1, Length[e]}]]; Select[Range[2, 400], s[#] == s[# + 1] &]
PROG
(PARI) s(n) = {my(e = factor(n!)[, 2]); sum(k=1, #e, hammingweight(e[k])); }
lista(kmax) = {my(s1 = s(1), s2); for(k = 2, kmax, s2 = s(k); if(s1 == s2, print1(k-1, ", ")); s1 = s2); }
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jul 16 2024
STATUS
approved