Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Mar 07 2022 07:53:51
%S 1,6,14,18,48,124,134,284,3135,4221,9594,16468,34825,557096,711676,
%T 746464,1333334,2676977,6514063,11280468,16081252,35401658,53879547,
%U 133333334,198485452,223856659,1333333334,2514095219,2956260256,3100811124,10912946218,19780160858
%N Numbers k such that A037276(k) == -1 (mod k).
%C Numbers k such that the concatenation of prime factors of k is 1 less than a multiple of k.
%C Contains 2*m for m in A093170.
%C Terms k where k-1 is prime include 6, 14, 18, 48 and 284. Are there others?
%H Martin Ehrenstein, <a href="/A351975/b351975.txt">Table of n, a(n) for n = 1..38</a>
%e a(4) = 48 is a term because 48=2*2*2*2*3 and 22223 == -1 (mod 48).
%p tcat:= proc(x,y) x*10^(1+ilog10(y))+y end proc:
%p filter:= proc(n) local F,t,i;
%p F:= map(t -> t[1]$t[2], sort(ifactors(n)[2],(a,b)->a[1]<b[1]));
%p t:= F[1];
%p for i from 2 to nops(F) do
%p t:= tcat(t,F[i])
%p od;
%p t mod n = n-1
%p end proc:
%p filter(1):= true:
%p select(filter, [$1..10^8]);
%o (Python)
%o from sympy import factorint
%o def A037276(n):
%o if n == 1: return 1
%o return int("".join(str(p)*e for p, e in sorted(factorint(n).items())))
%o def afind(limit, startk=1):
%o for k in range(startk, limit+1):
%o if (A037276(k) + 1)%k == 0:
%o print(k, end=", ")
%o afind(10**6) # _Michael S. Branicky_, Feb 27 2022
%o # adapted and corrected by _Martin Ehrenstein_, Mar 06 2022
%o (Python)
%o from itertools import count, islice
%o from sympy import factorint
%o def A351975_gen(startvalue=1): # generator of terms >= startvalue
%o for k in count(max(startvalue,1)):
%o c = 0
%o for d in sorted(factorint(k,multiple=True)):
%o c = (c*10**len(str(d)) + d) % k
%o if c == k-1:
%o yield k
%o A351975_list = list(islice(A351975_gen(),10)) # _Chai Wah Wu_, Feb 28 2022
%Y Cf. A037276, A093170.
%K nonn,base
%O 1,2
%A _J. M. Bergot_ and _Robert Israel_, Feb 26 2022
%E a(24)-a(25) from _Michael S. Branicky_, Feb 27 2022
%E Prepended 1 and more terms from _Martin Ehrenstein_, Feb 28 2022