OFFSET
0,3
COMMENTS
a(n) is the sum of all products of two distinct elements from the set {1^4, ..., n^4}.
LINKS
Roudy El Haddad, Multiple Sums and Partition Identities, arXiv:2102.00821 [math.CO], 2021.
Roudy El Haddad, A generalization of multiple zeta value. Part 2: Multiple sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 200-233, DOI: 10.7546/nntdm.2022.28.2.200-233.
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
a(n) = Sum_{j=2..n} Sum_{i=1..j-1} j^4*i^4.
a(n) = n*(n - 1)*(n + 1)*(2*n - 1)*(2*n + 1)*(9*n^5 + 20*n^4 - 15*n^3 - 50*n^2 + n + 30)/1800.
a(n) = binomial(2*n+2, 5)*(9*n^5 + 20*n^4 - 15*n^3 - 50*n^2 + n + 30)/5!.
G.f.: x^2*(16 + 1217*x + 12038*x^2 + 30415*x^3 + 23364*x^4 + 5263*x^5 + 262*x^6 + x^7)/(1 - x)^11. - Stefano Spezia, Feb 18 2022
PROG
(PARI) {a(n) = n*(n-1)*(n+1)*(2*n-1)*(2*n+1)*(9*n^5+20*n^4-15*n^3-50*n^2+n+30)/1800};
(PARI) a(n) = sum(j=2, n, sum(i=1, j-1, i^4*j^4));
(Python)
def A351760(n): return n*(n*(n*(n*(n*(n*(n*(n*(n*(9*n+20<<2)-105)-300)+88)+390)-20)-200)+1)+30)//1800 # Chai Wah Wu, Oct 03 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roudy El Haddad, Feb 18 2022
STATUS
approved