login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351760
a(n) = Sum_{1 <= i < j <= n} (i*j)^4.
1
0, 0, 16, 1393, 26481, 247731, 1516515, 6978790, 26131686, 83684778, 237014778, 607915231, 1436816095, 3170754405, 6600189141, 13064343516, 24750198748, 45116627556, 79482515700, 135826148445, 225852708445, 366397514791, 581244702423, 903454469346, 1378306878690, 2066986566190
OFFSET
0,3
COMMENTS
a(n) is the sum of all products of two distinct elements from the set {1^4, ..., n^4}.
LINKS
Roudy El Haddad, Multiple Sums and Partition Identities, arXiv:2102.00821 [math.CO], 2021.
Roudy El Haddad, A generalization of multiple zeta value. Part 2: Multiple sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 200-233, DOI: 10.7546/nntdm.2022.28.2.200-233.
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
a(n) = Sum_{j=2..n} Sum_{i=1..j-1} j^4*i^4.
a(n) = n*(n - 1)*(n + 1)*(2*n - 1)*(2*n + 1)*(9*n^5 + 20*n^4 - 15*n^3 - 50*n^2 + n + 30)/1800.
a(n) = binomial(2*n+2, 5)*(9*n^5 + 20*n^4 - 15*n^3 - 50*n^2 + n + 30)/5!.
G.f.: x^2*(16 + 1217*x + 12038*x^2 + 30415*x^3 + 23364*x^4 + 5263*x^5 + 262*x^6 + x^7)/(1 - x)^11. - Stefano Spezia, Feb 18 2022
PROG
(PARI) {a(n) = n*(n-1)*(n+1)*(2*n-1)*(2*n+1)*(9*n^5+20*n^4-15*n^3-50*n^2+n+30)/1800};
(PARI) a(n) = sum(j=2, n, sum(i=1, j-1, i^4*j^4));
(Python)
def A351760(n): return n*(n*(n*(n*(n*(n*(n*(n*(n*(9*n+20<<2)-105)-300)+88)+390)-20)-200)+1)+30)//1800 # Chai Wah Wu, Oct 03 2024
CROSSREFS
Cf. A000217 (for power 0), A000914 (for power 1), A000596 (for squares), A347107 (for cubes).
Cf. A000583 (fourth powers), A000538 (sum of fourth powers).
Sequence in context: A321583 A057994 A221607 * A330335 A160251 A106176
KEYWORD
nonn,easy
AUTHOR
Roudy El Haddad, Feb 18 2022
STATUS
approved