login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351763
Expansion of e.g.f. 1/(1 - 3*x*exp(x)).
3
1, 3, 24, 279, 4332, 84075, 1958058, 53202387, 1652070696, 57713665779, 2240196853710, 95650311987483, 4455281606078988, 224815388384744859, 12216916158370619010, 711312392929267383075, 44176151714082889756368, 2915038701200389804440675
OFFSET
0,2
FORMULA
E.g.f.: 1/(1 - 3*x*exp(x)).
a(n) = n! * Sum_{k=0..n} 3^(n-k) * (n-k)^k/k!.
a(0) = 1 and a(n) = 3 * n * Sum_{k=0..n-1} binomial(n-1,k) * a(k) for n > 0.
a(n) ~ n! / ((1 + LambertW(1/3)) * LambertW(1/3)^n). - Vaclav Kotesovec, Feb 19 2022
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-3*x*exp(x))))
(PARI) a(n) = n!*sum(k=0, n, 3^(n-k)*(n-k)^k/k!);
(PARI) a(n) = if(n==0, 1, 3*n*sum(k=0, n-1, binomial(n-1, k)*a(k)));
CROSSREFS
Column k=3 of A351761.
Cf. A351778.
Sequence in context: A218223 A276360 A354289 * A355794 A355426 A064037
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 18 2022
STATUS
approved