login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355794
Row 1 of A355793.
4
1, 3, 24, 282, 4236, 76548, 1608864, 38488152, 1032125136, 30670171248, 1000637672064, 35571839009952, 1368990872569536, 56720594992438848, 2517761078627172864, 119222916630934484352, 5999613754698100628736, 319763269764299852744448, 17994913747767982690289664
OFFSET
0,2
LINKS
A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
FORMULA
O.g.f.: A(x) = ( Sum_{k >= 0} t(k+1)/t(1)*x^k )/( Sum_{k >= 0} t(k)/t(0)*x^k ), where t(n) = Product_{k = 1..n} 3*k-1 = A008544(n) (triple factorial numbers).
A(x)/(1 - 2*x*A(x)) = Sum_{k >= 0} t(k+1)/t(1)*x^k.
A(x) = 1/(1 + 2*x - 5*x/(1 + 5*x - 8*x/(1 + 8*x - 11*x/(1 + 11*x - ... )))) (continued fraction).
A(x) satisfies the Riccati differential equation 3*x^2*A(x)' + 2*x*A(x)^2 - (1 - x)*A(x) + 1 = 0 with A(0) = 1.
Hence by Stokes, A(x) = 1/(1 - 3*x/(1 - 5*x/(1 - 6*x/(1 - 8*x/(1 - 9*x/(1 - 11*x/(1 - 12*x/(1 - ... )))))))), a continued fraction of Stieltjes type.
MAPLE
n := 1: seq(coeff(series( hypergeom([n+2/3, 1], [], 3*x)/hypergeom([n-1/3, 1], [], 3*x ), x, 21), x, k), k = 0..20);
CROSSREFS
Cf. A355793 (table).
Cf. A112936 (row 0), A355795 (row 2), A355796 (row 3), A355797 (row 4).
Sequence in context: A276360 A354289 A351763 * A355426 A064037 A257453
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 19 2022
STATUS
approved