Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Aug 15 2022 10:28:26
%S 1,3,24,282,4236,76548,1608864,38488152,1032125136,30670171248,
%T 1000637672064,35571839009952,1368990872569536,56720594992438848,
%U 2517761078627172864,119222916630934484352,5999613754698100628736,319763269764299852744448,17994913747767982690289664
%N Row 1 of A355793.
%H A. N. Stokes, <a href="https://doi.org/10.1017/S0004972700005219">Continued fraction solutions of the Riccati equation</a>, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
%F O.g.f.: A(x) = ( Sum_{k >= 0} t(k+1)/t(1)*x^k )/( Sum_{k >= 0} t(k)/t(0)*x^k ), where t(n) = Product_{k = 1..n} 3*k-1 = A008544(n) (triple factorial numbers).
%F A(x)/(1 - 2*x*A(x)) = Sum_{k >= 0} t(k+1)/t(1)*x^k.
%F A(x) = 1/(1 + 2*x - 5*x/(1 + 5*x - 8*x/(1 + 8*x - 11*x/(1 + 11*x - ... )))) (continued fraction).
%F A(x) satisfies the Riccati differential equation 3*x^2*A(x)' + 2*x*A(x)^2 - (1 - x)*A(x) + 1 = 0 with A(0) = 1.
%F Hence by Stokes, A(x) = 1/(1 - 3*x/(1 - 5*x/(1 - 6*x/(1 - 8*x/(1 - 9*x/(1 - 11*x/(1 - 12*x/(1 - ... )))))))), a continued fraction of Stieltjes type.
%p n := 1: seq(coeff(series( hypergeom([n+2/3, 1], [], 3*x)/hypergeom([n-1/3, 1], [], 3*x ), x, 21), x, k), k = 0..20);
%Y Cf. A355793 (table).
%Y Cf. A112936 (row 0), A355795 (row 2), A355796 (row 3), A355797 (row 4).
%Y Cf. A008544, A111528, A355721.
%K nonn,easy
%O 0,2
%A _Peter Bala_, Jul 19 2022