login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355793
Square table, read by antidiagonals: the g.f. for row n is given recursively by (3*n-1)*x*R(n,x) = 1 + (3*n-4)*x - 1/R(n-1,x) for n >= 1 with the initial value R(0,x) = Sum_{k >= 0} A112936(k+1)*x^k.
4
1, 1, 3, 1, 3, 15, 1, 3, 24, 111, 1, 3, 33, 282, 1131, 1, 3, 42, 507, 4236, 14943, 1, 3, 51, 786, 9609, 76548, 243915, 1, 3, 60, 1119, 17736, 212835, 1608864, 4742391, 1, 3, 69, 1506, 29103, 459768, 5350785, 38488152, 106912131, 1, 3, 78, 1947, 44196, 859143, 13333488
OFFSET
0,3
COMMENTS
Compare with A111528 and A355721, which have similar definitions and properties.
LINKS
A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
FORMULA
Let t(n) = Product_{k = 1..n} 3*k-1 = A008544(n) (triple factorial numbers).
O.g.f. for row n >= 0: R(n,x) = ( Sum_{k >= 0} t(n+k)/t(n)*x^k )/( Sum_{k >= 0} t(n-1+k)/t(n-1)*x^k ).
R(n,x)/(1 - (3*n-1)*x*R(n,x)) = Sum_{k >= 0} t(n+k)/t(n)*x^k.
R(n,x) = 1/(1 + (3*n-1)*x - (3*n+2)*x/(1 + (3*n+2)*x - (3*n+5)*x/(1 + (3*n+5)*x - (3*n+8)*x/(1 + (3*n+8)*x - ... )))) (continued fraction).
R(n,x) satisfies the Riccati differential equation 3*x^2*d/dx(R(n,x)) + (3*n-1)*x*R(n,x)^2 - (1 + (3*n-4)*x)*R(n,x) + 1 = 0 with R(n,0) = 1.
Applying Stokes 1982 gives R(n,x) = 1/(1 - 3*x/(1 - (3*n+2)*x/(1 - 6*x/(1 - (3*n+5)*x/(1 - 9*x/(1 - (3*n+8)*x/(1 - 12*x/(1 - ...)))))))), a continued fraction of Stieltjes type.
EXAMPLE
Square array begins
1, 3, 15, 111, 1131, 14943, 243915, 4742391, 106912131, ...
1, 3, 24, 282, 4236, 76548, 1608864, 38488152, 1032125136, ...
1, 3, 33, 507, 9609, 212835, 5350785, 149961675, 4628365305, ...
1, 3, 42, 786, 17736, 459768, 13333488, 425600976, 14791250688, ...
1, 3, 51, 1119, 29103, 859143, 28091463, 1002057591, 38606468343, ...
1, 3, 60, 1506, 44196, 1458588, 52917360, 2080630776, 87823112496, ...
1, 3, 69, 1947, 63501, 2311563, 91949469, 3943276347, 180679742061, ...
1, 3, 78, 2442, 87504, 3477360, 150259200, 6970190160, 344116224960, ...
MAPLE
T := (n, k) -> coeff(series(hypergeom([n+2/3, 1], [], 3*x)/ hypergeom([n-1/3, 1], [], 3*x), x, 21), x, k):
# display as a sequence
seq(seq(T(n-k, k), k = 0..n), n = 0..10);
# display as a square array
seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
CROSSREFS
Cf. A112936 (row 0), A355794 (row 1), A355795 (row 2), A355796 (row 3), A355797 (row 4). Cf. A008544, A111528, A355721.
Sequence in context: A327149 A351372 A356411 * A173424 A143081 A179658
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Bala, Jul 17 2022
STATUS
approved