OFFSET
0,3
LINKS
A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
FORMULA
Let t(n) = Product_{k = 1..n} 3*k-1 = A008544(n) (triple factorial numbers).
O.g.f. for row n >= 0: R(n,x) = ( Sum_{k >= 0} t(n+k)/t(n)*x^k )/( Sum_{k >= 0} t(n-1+k)/t(n-1)*x^k ).
R(n,x)/(1 - (3*n-1)*x*R(n,x)) = Sum_{k >= 0} t(n+k)/t(n)*x^k.
R(n,x) = 1/(1 + (3*n-1)*x - (3*n+2)*x/(1 + (3*n+2)*x - (3*n+5)*x/(1 + (3*n+5)*x - (3*n+8)*x/(1 + (3*n+8)*x - ... )))) (continued fraction).
R(n,x) satisfies the Riccati differential equation 3*x^2*d/dx(R(n,x)) + (3*n-1)*x*R(n,x)^2 - (1 + (3*n-4)*x)*R(n,x) + 1 = 0 with R(n,0) = 1.
Applying Stokes 1982 gives R(n,x) = 1/(1 - 3*x/(1 - (3*n+2)*x/(1 - 6*x/(1 - (3*n+5)*x/(1 - 9*x/(1 - (3*n+8)*x/(1 - 12*x/(1 - ...)))))))), a continued fraction of Stieltjes type.
EXAMPLE
Square array begins
1, 3, 15, 111, 1131, 14943, 243915, 4742391, 106912131, ...
1, 3, 24, 282, 4236, 76548, 1608864, 38488152, 1032125136, ...
1, 3, 33, 507, 9609, 212835, 5350785, 149961675, 4628365305, ...
1, 3, 42, 786, 17736, 459768, 13333488, 425600976, 14791250688, ...
1, 3, 51, 1119, 29103, 859143, 28091463, 1002057591, 38606468343, ...
1, 3, 60, 1506, 44196, 1458588, 52917360, 2080630776, 87823112496, ...
1, 3, 69, 1947, 63501, 2311563, 91949469, 3943276347, 180679742061, ...
1, 3, 78, 2442, 87504, 3477360, 150259200, 6970190160, 344116224960, ...
MAPLE
T := (n, k) -> coeff(series(hypergeom([n+2/3, 1], [], 3*x)/ hypergeom([n-1/3, 1], [], 3*x), x, 21), x, k):
# display as a sequence
seq(seq(T(n-k, k), k = 0..n), n = 0..10);
# display as a square array
seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Jul 17 2022
STATUS
approved