login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square table, read by antidiagonals: the g.f. for row n is given recursively by (3*n-1)*x*R(n,x) = 1 + (3*n-4)*x - 1/R(n-1,x) for n >= 1 with the initial value R(0,x) = Sum_{k >= 0} A112936(k+1)*x^k.
4

%I #9 Aug 15 2022 10:28:30

%S 1,1,3,1,3,15,1,3,24,111,1,3,33,282,1131,1,3,42,507,4236,14943,1,3,51,

%T 786,9609,76548,243915,1,3,60,1119,17736,212835,1608864,4742391,1,3,

%U 69,1506,29103,459768,5350785,38488152,106912131,1,3,78,1947,44196,859143,13333488

%N Square table, read by antidiagonals: the g.f. for row n is given recursively by (3*n-1)*x*R(n,x) = 1 + (3*n-4)*x - 1/R(n-1,x) for n >= 1 with the initial value R(0,x) = Sum_{k >= 0} A112936(k+1)*x^k.

%C Compare with A111528 and A355721, which have similar definitions and properties.

%H A. N. Stokes, <a href="https://doi.org/10.1017/S0004972700005219">Continued fraction solutions of the Riccati equation</a>, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.

%F Let t(n) = Product_{k = 1..n} 3*k-1 = A008544(n) (triple factorial numbers).

%F O.g.f. for row n >= 0: R(n,x) = ( Sum_{k >= 0} t(n+k)/t(n)*x^k )/( Sum_{k >= 0} t(n-1+k)/t(n-1)*x^k ).

%F R(n,x)/(1 - (3*n-1)*x*R(n,x)) = Sum_{k >= 0} t(n+k)/t(n)*x^k.

%F R(n,x) = 1/(1 + (3*n-1)*x - (3*n+2)*x/(1 + (3*n+2)*x - (3*n+5)*x/(1 + (3*n+5)*x - (3*n+8)*x/(1 + (3*n+8)*x - ... )))) (continued fraction).

%F R(n,x) satisfies the Riccati differential equation 3*x^2*d/dx(R(n,x)) + (3*n-1)*x*R(n,x)^2 - (1 + (3*n-4)*x)*R(n,x) + 1 = 0 with R(n,0) = 1.

%F Applying Stokes 1982 gives R(n,x) = 1/(1 - 3*x/(1 - (3*n+2)*x/(1 - 6*x/(1 - (3*n+5)*x/(1 - 9*x/(1 - (3*n+8)*x/(1 - 12*x/(1 - ...)))))))), a continued fraction of Stieltjes type.

%e Square array begins

%e 1, 3, 15, 111, 1131, 14943, 243915, 4742391, 106912131, ...

%e 1, 3, 24, 282, 4236, 76548, 1608864, 38488152, 1032125136, ...

%e 1, 3, 33, 507, 9609, 212835, 5350785, 149961675, 4628365305, ...

%e 1, 3, 42, 786, 17736, 459768, 13333488, 425600976, 14791250688, ...

%e 1, 3, 51, 1119, 29103, 859143, 28091463, 1002057591, 38606468343, ...

%e 1, 3, 60, 1506, 44196, 1458588, 52917360, 2080630776, 87823112496, ...

%e 1, 3, 69, 1947, 63501, 2311563, 91949469, 3943276347, 180679742061, ...

%e 1, 3, 78, 2442, 87504, 3477360, 150259200, 6970190160, 344116224960, ...

%p T := (n,k) -> coeff(series(hypergeom([n+2/3, 1], [], 3*x)/ hypergeom([n-1/3, 1], [], 3*x), x, 21), x, k):

%p # display as a sequence

%p seq(seq(T(n-k,k), k = 0..n), n = 0..10);

%p # display as a square array

%p seq(print(seq(T(n,k), k = 0..10)), n = 0..10);

%Y Cf. A112936 (row 0), A355794 (row 1), A355795 (row 2), A355796 (row 3), A355797 (row 4). Cf. A008544, A111528, A355721.

%K nonn,tabl,easy

%O 0,3

%A _Peter Bala_, Jul 17 2022