Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Oct 04 2024 08:53:04
%S 0,0,16,1393,26481,247731,1516515,6978790,26131686,83684778,237014778,
%T 607915231,1436816095,3170754405,6600189141,13064343516,24750198748,
%U 45116627556,79482515700,135826148445,225852708445,366397514791,581244702423,903454469346,1378306878690,2066986566190
%N a(n) = Sum_{1 <= i < j <= n} (i*j)^4.
%C a(n) is the sum of all products of two distinct elements from the set {1^4, ..., n^4}.
%H Roudy El Haddad, <a href="https://arxiv.org/abs/2102.00821">Multiple Sums and Partition Identities</a>, arXiv:2102.00821 [math.CO], 2021.
%H Roudy El Haddad, <a href="https://doi.org/10.7546/nntdm.2022.28.2.200-233">A generalization of multiple zeta value. Part 2: Multiple sums</a>. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 200-233, DOI: 10.7546/nntdm.2022.28.2.200-233.
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
%F a(n) = Sum_{j=2..n} Sum_{i=1..j-1} j^4*i^4.
%F a(n) = n*(n - 1)*(n + 1)*(2*n - 1)*(2*n + 1)*(9*n^5 + 20*n^4 - 15*n^3 - 50*n^2 + n + 30)/1800.
%F a(n) = binomial(2*n+2, 5)*(9*n^5 + 20*n^4 - 15*n^3 - 50*n^2 + n + 30)/5!.
%F G.f.: x^2*(16 + 1217*x + 12038*x^2 + 30415*x^3 + 23364*x^4 + 5263*x^5 + 262*x^6 + x^7)/(1 - x)^11. - _Stefano Spezia_, Feb 18 2022
%o (PARI) {a(n) = n*(n-1)*(n+1)*(2*n-1)*(2*n+1)*(9*n^5+20*n^4-15*n^3-50*n^2+n+30)/1800};
%o (PARI) a(n) = sum(j=2, n, sum(i=1, j-1, i^4*j^4));
%o (Python)
%o def A351760(n): return n*(n*(n*(n*(n*(n*(n*(n*(n*(9*n+20<<2)-105)-300)+88)+390)-20)-200)+1)+30)//1800 # _Chai Wah Wu_, Oct 03 2024
%Y Cf. A000217 (for power 0), A000914 (for power 1), A000596 (for squares), A347107 (for cubes).
%Y Cf. A000583 (fourth powers), A000538 (sum of fourth powers).
%K nonn,easy
%O 0,3
%A _Roudy El Haddad_, Feb 18 2022