login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351501
a(n) = binomial(n^2 + n - 1, n) / (n^2 + n - 1).
1
1, 2, 15, 204, 4095, 109668, 3689595, 149846840, 7141879503, 391139588190, 24218296445200, 1673538279265020, 127715832778905150, 10670643284149377480, 968929726650218004435, 95024894699780159868144, 10011211830149283223044015
OFFSET
1,2
COMMENTS
Empirical: In the ring of symmetric functions over the fraction field Q(q, t), let s(n) denote the Schur function indexed by n. Then (up to sign) a(n) is the coefficient of s(1^n) in nabla^(n) s(n) with q=t=1, where nabla denotes the "nabla operator" on symmetric functions.
FORMULA
a(n) ~ c*exp(n-1/(6*n))*n^(n-5/2), where c = sqrt(e/(2*Pi)). - Stefano Spezia, May 04 2022
a(n) = n * A182316(n - 1). - F. Chapoton, Sep 22 2023
MATHEMATICA
Table[With[{c=n^2+n-1}, Binomial[c, n]/c], {n, 20}] (* Harvey P. Dale, Jan 01 2024 *)
PROG
(Sage) [binomial(n*n+n-1, n)/(n*n+n-1) for n in range(1, 29)]
(Python)
from math import comb
def A351501(n): return comb(m := n**2+n-1, n)//m # Chai Wah Wu, May 07 2022
CROSSREFS
Closely related to A177784. See also A091144.
Diagonal of A162382. Multiple of A182316.
Sequence in context: A020557 A323118 A184361 * A124558 A020565 A377861
KEYWORD
nonn
AUTHOR
F. Chapoton, May 03 2022
STATUS
approved