OFFSET
1,2
COMMENTS
Empirical: In the ring of symmetric functions over the fraction field Q(q, t), let s(n) denote the Schur function indexed by n. Then (up to sign) a(n) is the coefficient of s(1^n) in nabla^(n) s(n) with q=t=1, where nabla denotes the "nabla operator" on symmetric functions.
FORMULA
a(n) ~ c*exp(n-1/(6*n))*n^(n-5/2), where c = sqrt(e/(2*Pi)). - Stefano Spezia, May 04 2022
a(n) = n * A182316(n - 1). - F. Chapoton, Sep 22 2023
MATHEMATICA
Table[With[{c=n^2+n-1}, Binomial[c, n]/c], {n, 20}] (* Harvey P. Dale, Jan 01 2024 *)
PROG
(Sage) [binomial(n*n+n-1, n)/(n*n+n-1) for n in range(1, 29)]
(Python)
from math import comb
def A351501(n): return comb(m := n**2+n-1, n)//m # Chai Wah Wu, May 07 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
F. Chapoton, May 03 2022
STATUS
approved