login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351503
Expansion of e.g.f. 1/(1 + x^2 * log(1 - x)).
11
1, 0, 0, 6, 12, 40, 900, 6048, 43680, 717120, 8658720, 102231360, 1735525440, 28819964160, 473955850368, 9235543363200, 189202617676800, 3940225003653120, 89804740509434880, 2169337606086389760, 54085753764912844800, 1429100881569205125120
OFFSET
0,4
LINKS
FORMULA
a(0) = 1; a(n) = n! * Sum_{k=3..n} 1/(k-2) * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/3)} k! * |Stirling1(n-2*k,k)|/(n-2*k)!.
MATHEMATICA
With[{nn=30}, CoefficientList[Series[1/(1+x^2 Log[1-x]), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 18 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2*log(1-x))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=3, i, 1/(j-2)*v[i-j+1]/(i-j)!)); v;
(PARI) a(n) = n!*sum(k=0, n\3, k!*abs(stirling(n-2*k, k, 1))/(n-2*k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 04 2022
STATUS
approved