login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351461
Lexicographically earliest infinite sequence such that a(i) = a(j) => A206787(i) = A206787(j) and A336651(i) = A336651(j) for all i, j >= 1.
7
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 8, 2, 12, 7, 13, 4, 14, 8, 11, 1, 15, 9, 15, 5, 16, 10, 17, 3, 18, 11, 19, 6, 20, 8, 15, 2, 21, 12, 22, 7, 23, 13, 22, 4, 24, 14, 25, 8, 26, 11, 27, 1, 28, 15, 29, 9, 30, 15, 22, 5, 31, 16, 32, 10, 30, 17, 24, 3, 33, 18, 28, 11, 34, 19, 35, 6, 36, 20, 37, 8, 38, 15, 35, 2, 39, 21, 40, 12, 41, 22, 42, 7, 43
OFFSET
1,3
COMMENTS
Restricted growth sequence transform of the ordered pair [A206787(n), A336651(n)], or equally, of sequence b(n) = A291750(A000265(n)).
For all i, j >= 1:
A003602(i) = A003602(j) => A351040(i) = A351040(j) => a(i) = a(j),
A324400(i) = A324400(j) => A351460(i) = A351460(j) => a(i) = a(j),
a(i) = a(j) => A000593(i) = A000593(j),
a(i) = a(j) => A347385(i) = A347385(j),
a(i) = a(j) => A351037(i) = A351037(j) => A347240(i) = A347240(j).
From Antti Karttunen, Nov 23 2023: (Start)
Conjectured to be equal to the lexicographically earliest infinite sequence such that b(i) = b(j) => A000593(i) = A000593(j) and A336467(i) = A336467(j) for all i, j >= 1. In any case, a(i) = a(j) => b(i) = b(j) for all i, j >= 1 [because both A000593(n) and A336467(n) can be computed from the values of A206787(n) and A336651(n)], but whether the implication holds to the opposite direction is still open. Empirically this has been checked up to n = 2^22. See also comment in A351040.
(End)
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A206787(n) = sumdiv(n, d, d*(d % 2)*issquarefree(d)); \\ From A206787
A336651(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i, 1], 1, f[i, 1]^(f[i, 2]-1))); };
Aux351461(n) = [A206787(n), A336651(n)];
v351461 = rgs_transform(vector(up_to, n, Aux351461(n)));
A351461(n) = v351461[n];
CROSSREFS
Differs from A351037 for the first time at n=103, where a(103) = 42 while A351037(103) = 27.
Sequence in context: A336460 A108712 A351037 * A336936 A366886 A336392
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 11 2022
STATUS
approved