login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336936
Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A007733(n), A329697(n), A331410(n)], for all i, j >= 1.
4
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 10, 4, 14, 8, 15, 1, 16, 9, 17, 5, 18, 10, 17, 3, 19, 11, 20, 6, 21, 12, 22, 2, 23, 13, 24, 7, 25, 10, 26, 4, 27, 14, 28, 8, 29, 15, 30, 1, 21, 16, 31, 9, 32, 17, 33, 5, 34, 18, 35, 10, 36, 17, 37, 3, 38, 19, 39, 11, 40, 20, 41, 6, 42, 21, 43, 12, 44, 22, 45, 2, 46, 23, 47, 13
OFFSET
1,3
COMMENTS
Restricted growth sequence transform of the triplet [A007733(n), A329697(n), A331410(n)], or equally, of the ordered pair [A007733(n), A335880(n)].
For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A007733(n) = znorder(Mod(2, n/2^valuation(n, 2))); \\ From A007733
A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
A331410(n) = if(!bitand(n, n-1), 0, 1+A331410(n+(n/vecmax(factor(n)[, 1]))));
Aux336936(n) = [A007733(n), A329697(n), A331410(n)];
v336936 = rgs_transform(vector(up_to, n, Aux336936(n)));
A336936(n) = v336936[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 11 2020
STATUS
approved