login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A336936
Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A007733(n), A329697(n), A331410(n)], for all i, j >= 1.
4
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 10, 4, 14, 8, 15, 1, 16, 9, 17, 5, 18, 10, 17, 3, 19, 11, 20, 6, 21, 12, 22, 2, 23, 13, 24, 7, 25, 10, 26, 4, 27, 14, 28, 8, 29, 15, 30, 1, 21, 16, 31, 9, 32, 17, 33, 5, 34, 18, 35, 10, 36, 17, 37, 3, 38, 19, 39, 11, 40, 20, 41, 6, 42, 21, 43, 12, 44, 22, 45, 2, 46, 23, 47, 13
OFFSET
1,3
COMMENTS
Restricted growth sequence transform of the triplet [A007733(n), A329697(n), A331410(n)], or equally, of the ordered pair [A007733(n), A335880(n)].
For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A007733(n) = znorder(Mod(2, n/2^valuation(n, 2))); \\ From A007733
A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
A331410(n) = if(!bitand(n, n-1), 0, 1+A331410(n+(n/vecmax(factor(n)[, 1]))));
Aux336936(n) = [A007733(n), A329697(n), A331410(n)];
v336936 = rgs_transform(vector(up_to, n, Aux336936(n)));
A336936(n) = v336936[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 11 2020
STATUS
approved