login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A007733(n), A329697(n), A331410(n)], for all i, j >= 1.
4

%I #5 Aug 11 2020 10:38:44

%S 1,1,2,1,3,2,4,1,5,3,6,2,7,4,8,1,9,5,10,3,11,6,12,2,13,7,10,4,14,8,15,

%T 1,16,9,17,5,18,10,17,3,19,11,20,6,21,12,22,2,23,13,24,7,25,10,26,4,

%U 27,14,28,8,29,15,30,1,21,16,31,9,32,17,33,5,34,18,35,10,36,17,37,3,38,19,39,11,40,20,41,6,42,21,43,12,44,22,45,2,46,23,47,13

%N Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A007733(n), A329697(n), A331410(n)], for all i, j >= 1.

%C Restricted growth sequence transform of the triplet [A007733(n), A329697(n), A331410(n)], or equally, of the ordered pair [A007733(n), A335880(n)].

%C For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).

%H Antti Karttunen, <a href="/A336936/b336936.txt">Table of n, a(n) for n = 1..65537</a>

%o (PARI)

%o up_to = 65537;

%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };

%o A007733(n) = znorder(Mod(2, n/2^valuation(n, 2))); \\ From A007733

%o A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));

%o A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1]))));

%o Aux336936(n) = [A007733(n), A329697(n), A331410(n)];

%o v336936 = rgs_transform(vector(up_to, n, Aux336936(n)));

%o A336936(n) = v336936[n];

%Y Cf. A003602, A007733, A329697, A331410, A335880.

%Y Cf. also A324400, A336920, A336933, A336934, A336935.

%K nonn

%O 1,3

%A _Antti Karttunen_, Aug 11 2020