login
A351458
Numbers k for which k * gcd(sigma(k), A276086(k)) is equal to sigma(k) * gcd(k, A276086(k)), where A276086 is the primorial base exp-function, and sigma gives the sum of divisors of its argument.
12
1, 10, 56, 9196, 9504, 56160, 121176, 239096, 354892, 411264, 555520, 716040, 804384, 904704, 1063348, 1387386, 1444352, 1454112, 1884800, 2708640, 3317248, 3548920, 4009824, 4634784, 6179712, 6795360, 7285248, 14511744, 16328466, 28377216, 29855232, 31940280, 37444736, 42711552, 49762944, 52815744
OFFSET
1,2
COMMENTS
Numbers k such that k * A324644(k) = A000203(k) * A324198(k).
Numbers k such that gcd(A064987(k), A324580(k)) = gcd(A064987(k), A351252(k)).
Numbers k such that their abundancy index [sigma(k)/k] is equal to A324644(k)/A324198(k). See A364286.
A324644 gives odd values for even numbers and for the odd squares. A324198 is odd on all arguments, therefore on odd squares the above equation reduces to odd * odd = odd * odd, and on odd nonsquares as odd * even = even * odd. It is an open question whether there are any odd terms after the initial a(1)=1.
If k is even, but not a multiple of 3, then A276086(k) is a multiple of 3, but not even (i.e., is an odd multiple of 3). If for such k also sigma(k) = 3*k, then A007949(A324644(k)) = min(A007949(sigma(k)), A007949(A276086(k))) = 1, while A007949(A324198(k)) = min(A007949(k), A007949(A276086(k))) = 0, therefore all such k's do occur in this sequence, for example, the two known terms of A005820 (3-perfect numbers) that are not multiples of three: 459818240, 51001180160, but also any hypothetical term of A005820 of the form 4u+2, where 2u+1 is not multiple of 3, and which by necessity is then also an odd perfect number.
Similarly, of the 65 known 5-multiperfect numbers (A046060), those 20 that are not multiples of five are included in this sequence. Note that all 65 are multiples of six.
It is conjectured that the intersection of this sequence with the multiperfect numbers (A007691) gives A323653, see comments in the latter.
For all even terms k of this sequence, A007814(A000203(k)) = A007814(k), sigma preserves the 2-adic valuation, and A007949(A000203(k)) >= A007949(k), i.e., does not decrease the 3-adic valuation. The condition is equivalence (=) when k is a multiple of 6. With odd terms, any hypothetical odd perfect number x would yield a one greater 2-adic valuation for sigma(x) than for x, but would satisfy the main condition of this sequence. - Corrected Feb 17 2022
If k is a nonsquare positive odd number (in A088828), then it must be a term of A191218. - Antti Karttunen, Mar 10 2024
PROG
(PARI)
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
isA351458(n) = { my(s=sigma(n), z=A276086(n)); (n*gcd(s, z))==(s*gcd(n, z)); };
(PARI)
A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]); \\ Works OK with rationals also!
isA351458(n) = { my(orgn=n, s=sigma(n), abi=s/n, p=2, q=A006530(abi), d, e1, e2); while((1!=abi)&&(p<=q), d = n%p; e1 = min(d, valuation(s, p)); e2 = min(d, valuation(orgn, p)); d = e1-e2; if(valuation(abi, p)!=d, return(0), abi /= (p^d)); n = n\p; p = nextprime(1+p)); (abi==1); }; \\ (This implementation does not require the construction of largish intermediate numbers, A276086, but might still be slower and return a few false positives on the long run, so please check the results with the above program). - Antti Karttunen, Feb 19 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 13 2022
STATUS
approved