login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351464
Let f be multiplicative with f(prime(k)^e) = k + e*i for any k, e > 0 (where i denotes the imaginary unit); a(n) is the real part of f(n). See A351465 for the imaginary part.
2
1, 1, 2, 1, 3, 1, 4, 1, 2, 2, 5, 0, 6, 3, 5, 1, 7, 0, 8, 1, 7, 4, 9, -1, 3, 5, 2, 2, 10, 0, 11, 1, 9, 6, 11, -2, 12, 7, 11, 0, 13, 1, 14, 3, 4, 8, 15, -2, 4, 1, 13, 4, 16, -1, 14, 1, 15, 9, 17, -5, 18, 10, 6, 1, 17, 2, 19, 5, 17, 4, 20, -4, 21, 11, 4, 6, 19, 3
OFFSET
1,3
COMMENTS
Apparently, each integer (from Z) appears in this sequence.
EXAMPLE
For n = 42:
- 42 = 2 * 3 * 7 = prime(1)^1 * prime(2)^1 * prime(4)^1,
- f(42) = (1+i) * (2+i) * (4+i) = 1 + 13*i,
- and a(42) = 1.
MAPLE
b:= proc(n) option remember; uses numtheory;
mul(pi(i[1])+i[2]*I, i=ifactors(n)[2])
end:
a:= n-> Re(b(n)):
seq(a(n), n=1..78); # Alois P. Heinz, Feb 15 2022
MATHEMATICA
f[p_, e_] := PrimePi[p] + e*I; a[1] = 1; a[n_] := Re[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Feb 15 2022 *)
PROG
(PARI) a(n) = { my (f=factor(n), p=f[, 1]~, e=f[, 2]~); real(prod (k=1, #p, primepi(p[k]) + I*e[k])) }
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Rémy Sigrist, Feb 11 2022
STATUS
approved