login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241919
If n is a prime power, p_i^e, a(n) = i, (with a(1)=0), otherwise difference (i-j) of the indices of the two largest distinct primes p_i, p_j, i > j in the prime factorization of n: a(n) = A061395(n) - A061395(A051119(n)).
10
0, 1, 2, 1, 3, 1, 4, 1, 2, 2, 5, 1, 6, 3, 1, 1, 7, 1, 8, 2, 2, 4, 9, 1, 3, 5, 2, 3, 10, 1, 11, 1, 3, 6, 1, 1, 12, 7, 4, 2, 13, 2, 14, 4, 1, 8, 15, 1, 4, 2, 5, 5, 16, 1, 2, 3, 6, 9, 17, 1, 18, 10, 2, 1, 3, 3, 19, 6, 7, 1, 20, 1, 21, 11, 1, 7, 1, 4, 22, 2, 2, 12, 23
OFFSET
1,3
COMMENTS
See A242411 and A241917 for other variants.
LINKS
FORMULA
a(n) = A061395(n) - A061395(A051119(n)).
PROG
(Scheme) (define (A241919 n) (- (A061395 n) (A061395 (A051119 n))))
(Haskell)
a241919 1 = 0
a241919 n = i - j where
(i:j:_) = map a049084 $ reverse (1 : a027748_row n)
-- Reinhard Zumkeller, May 15 2014
(Python)
from sympy import factorint, primefactors, primepi
def a061395(n): return 0 if n==1 else primepi(primefactors(n)[-1])
def a053585(n):
if n==1: return 1
p = primefactors(n)[-1]
return p**factorint(n)[p]
def a051119(n): return n/a053585(n)
def a(n): return a061395(n) - a061395(a051119(n)) # Indranil Ghosh, May 19 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 13 2014
STATUS
approved