login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350740
Number of integer points (x, y, z, w) at distance <= 1/2 from 3-sphere of radius n.
1
1, 32, 200, 528, 1280, 2744, 4272, 6592, 10144, 15048, 19824, 25824, 34744, 43520, 55184, 64680, 80864, 99184, 115616, 135144, 157344, 185872, 207304, 239600, 272960, 310240, 351096, 385392, 433040, 485528, 531728, 583696, 646056, 714800, 779488, 842928
OFFSET
0,2
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..10000 (terms 0..200 from Robert Israel)
FORMULA
a(n) = A046895(n^2+n)-A046895(n^2-n) for n > 0. - Chai Wah Wu, Jun 21 2024
MAPLE
N:= 40: # for a(0)..a(N)
V:= Array(0..N):
for x from 0 to N do
for y from x to N do
for z from y to N do
for w from z to N do
S:= {x, y, z, w};
L:= [x, y, z, w];
m:= round(sqrt(x^2 + y^2 + z^2 + w^2));
if m > N then next fi;
f:= 4!/mul(numboccur(s, L)!, s = S) * 2^(4 - numboccur(0, [x, y, z, w]));
V[m]:= V[m] + f;
od od od od;
convert(V, list); # Robert Israel, Mar 08 2024
PROG
(Python)
from itertools import product
for R in range(100):
c = 0
for s in product(range(2*R + 1), repeat = 4):
if (2*R - 1)**2 <= 4*sum((i - R)**2 for i in s) <= (2*R + 1)**2: c += 1
print(c if R != 0 else 1, end = ', ')
(Python)
from itertools import combinations_with_replacement
from math import prod
from collections import Counter
def A350740(n):
if n == 0: return 1
x, y = (2*n-1)**2, (2*n+1)**2
return sum(24//prod((1, 1, 2, 6, 24)[d] for d in q.values())<<4-q[0] for q in map(Counter, combinations_with_replacement(range(n+1), 4)) if x <= sum(b*a**2 for a, b in q.items())<<2 <= y) # Chai Wah Wu, Jun 20 2024
(Python)
# Uses Python code in A046895
def A350740(n): return A046895(n*(n+1))-A046895(n*(n-1)) if n else 1 # Chai Wah Wu, Jun 21 2024
CROSSREFS
A 4-dimensional version of A016728.
Cf. A046895.
Sequence in context: A212863 A019560 A130811 * A232051 A247927 A247928
KEYWORD
nonn
AUTHOR
Jeongseop Lee, Jan 12 2022
STATUS
approved