login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016728
Number of integer points (x,y,z) at distance <= 0.5 from sphere of radius n.
2
1, 18, 62, 98, 210, 350, 450, 602, 762, 1142, 1250, 1458, 1814, 2178, 2498, 2622, 3338, 3722, 4170, 4358, 5034, 5714, 5982, 6602, 7130, 8034, 8606, 9066, 9962, 10550, 11226, 12146, 12606, 13802, 14754, 15194, 16454, 17154, 18266, 18750
OFFSET
0,2
FORMULA
For n > 0, a(n) = Sum_{i=n*(n-1)+1..n*(n+1)} A005875(i). - Chai Wah Wu, Jun 23 2024
PROG
(Python)
from itertools import combinations_with_replacement
from math import prod
from collections import Counter
def A016728(n):
if n == 0: return 1
x, y = (2*n-1)**2, (2*n+1)**2
return sum(6//prod((1, 1, 2, 6)[d] for d in q.values())<<3-q[0] for q in map(Counter, combinations_with_replacement(range(n+1), 3)) if x <= sum(b*a**2 for a, b in q.items())<<2 <= y) # Chai Wah Wu, Jun 20 2024
(Python)
# uses Python code from A005875
def A016728(n):
if n == 0: return 1
return sum(A005875(i) for i in range(n*(n-1)+1, n*(n+1)+1)) # Chai Wah Wu, Jun 23 2024
CROSSREFS
Cf. A005875.
Sequence in context: A338536 A090073 A327089 * A232385 A275155 A259634
KEYWORD
nonn
AUTHOR
csvcjld(AT)nomvst.lsumc.edu
STATUS
approved