login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130811
If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 5-subsets of X containing none of X_i, (i=1,...n).
3
32, 192, 672, 1792, 4032, 8064, 14784, 25344, 41184, 64064, 96096, 139776, 198016, 274176, 372096, 496128, 651168, 842688, 1076768, 1360128, 1700160, 2104960, 2583360, 3144960, 3800160, 4560192, 5437152, 6444032, 7594752, 8904192
OFFSET
5,1
COMMENTS
Number of n permutations (n>=5) of 3 objects u,v,z, with repetition allowed, containing n-5 u's. Example: if n=5 then n-5 =(0) zero u, a(1)=32. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 4-dimensional elements in an n-cross polytope where n>=5. - Patrick J. McNab, Jul 06 2015
LINKS
Eric Weisstein's World of Mathematics, Cross Polytope
FORMULA
a(n) = binomial(2*n,5) + (2*n-4)*binomial(n,2) - n*binomial(2*n-2,3).
a(n) = C(n,n-5)*2^5, for n>=5. - Zerinvary Lajos, Dec 07 2007
G.f.: 32*x^5/(1-x)^6. - Colin Barker, Apr 14 2012
MAPLE
a:=n->binomial(2*n, 5)+(2*n-4)*binomial(n, 2)-n*binomial(2*n-2, 3)
seq(binomial(n, n-5)*2^5, n=5..34); # Zerinvary Lajos, Dec 07 2007
seq(binomial(n+4, 5)*2^5, n=1..22); # Zerinvary Lajos, Aug 05 2008
MATHEMATICA
Table[Binomial[2 n, 5] + (2 n - 4) Binomial[n, 2] - n Binomial[2 n - 2, 3], {n, 5, 40}] (* Vincenzo Librandi, Jul 09 2015 *)
PROG
(Magma) [Binomial(n, n-5)*2^5: n in [5..40]]; // Vincenzo Librandi, Jul 09 2015
KEYWORD
nonn,easy
AUTHOR
Milan Janjic, Jul 16 2007
STATUS
approved