The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140325 a(n) = binomial(n+8,8) * 2^n. 13
 1, 18, 180, 1320, 7920, 41184, 192192, 823680, 3294720, 12446720, 44808192, 154791936, 515973120, 1666990080, 5239111680, 16066609152, 48199827456, 141764198400, 409541017600, 1163958681600, 3259084308480, 9001280471040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS With a different offset, number of n-permutations (n>=8) of 3 objects: u, v, z with repetition allowed, containing exactly eight (8) u's. See example. Number of 8D hypercubes in an (n+8)-dimensional hypercube. [Zerinvary Lajos, Jan 29 2010] LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..400 Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013. Index entries for linear recurrences with constant coefficients, signature (18,-144,672,-2016,4032,-5376,4608,-2304,512). FORMULA a(n) = A038207(n+8,8). G.f.: 1/(1-2*x)^9. - R. J. Mathar, Feb 11 2010 a(n) = 2*a(n-1) + A054851(n-1). - Ruskin Harding, May 12 2013 a(n) = Sum_{i=8..n+8} binomial(i,8)*binomial(n+8,i). Example: for n=6, a(6) = 1*3003 + 9*2002 + 45*1001 + 165*364 + 495*91 + 1287*14 + 3003*1 = 192192. - Bruno Berselli, Mar 23 2018 From Amiram Eldar, Jan 07 2022: (Start) Sum_{n>=0} 1/a(n) = 1276/105 - 16*log(2). Sum_{n>=0} (-1)^n/a(n) = 34992*log(3/2) - 496548/35. (End) EXAMPLE Example: a(1)=18 because we have uuuuuuuuv, uuuuuuuvu, uuuuuuvuu, uuuuuvuuu, uuuuvuuuu, uuuvuuuuu, uuvuuuuuu, uvuuuuuuu, vuuuuuuuu, uuuuuuuuz, uuuuuuuzu, uuuuuuzuu, uuuuuzuuu, uuuuzuuuu, uuuzuuuuu, uuzuuuuuu, uzuuuuuuu and zuuuuuuu. MAPLE seq(binomial(n+8, 8)*2^n, n=0..28); MATHEMATICA Table[Binomial[n + 8, 8] 2^n, {n, 0, 20}] (* Zerinvary Lajos, Jan 29 2010 *) PROG (Magma) [2^n*Binomial(n+8, 8): n in [0..30]]; // Vincenzo Librandi, Oct 14 2011 CROSSREFS Cf. A038207, A054851. Sequence in context: A121038 A341370 A004410 * A199299 A155669 A160954 Adjacent sequences: A140322 A140323 A140324 * A140326 A140327 A140328 KEYWORD nonn,easy AUTHOR Zerinvary Lajos, Jun 23 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 2 19:19 EST 2024. Contains 370498 sequences. (Running on oeis4.)