login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350738
Expansion of Sum_{k>=0} (-1)^k * x^(k^2) * Product_{j=1..k} (1+x^j).
3
1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -2, -1, -1, -1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 0, 0, -1, -2, -2, -3, -3, -3, -3, -3, -3, -1, -1, 0, 1, 1, 3, 4, 4, 4, 5, 5, 5, 5, 3, 3, 3, 1, 0, -1, -3, -4, -4, -6, -7, -7, -8, -8, -8, -7, -7, -6, -5, -4, -2, -1, 1, 3, 5, 6, 8, 9, 10, 12, 13, 13, 12, 13, 12, 11, 11, 9, 7, 5, 3, 0
OFFSET
0,13
LINKS
PROG
(PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=0, sqrtint(N), (-1)^k*x^k^2*prod(j=1, k, 1+x^j)))
(Python)
from math import prod, isqrt
from sympy import Poly
from sympy.abc import x
def A350738(n): return Poly(sum((-1 if k % 2 else 1)*x**(k**2)*prod(1+x**j for j in range(1, k+1)) for k in range(isqrt(n+1)+1))).all_coeffs()[-n-1] # Chai Wah Wu, Jan 14 2022
CROSSREFS
KEYWORD
sign,look
AUTHOR
Seiichi Manyama, Jan 12 2022
STATUS
approved