login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178058
Number of 1's in the Gray code for binomial(n,m).
2
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 5, 3, 3, 5, 1, 1, 1, 2, 2, 2, 4, 2, 2, 2, 1, 1, 3, 4, 6, 2, 2, 6, 4, 3, 1, 1, 4, 5, 2, 6, 2, 6, 2, 5, 4, 1
OFFSET
0,5
COMMENTS
Row sums are: 1, 2, 4, 4, 8, 16, 12, 20, 18, 32, 38,....
LINKS
Eric W. Weisstein’s World of Mathematics, Gray code
FORMULA
T(n,m) = A005811(binomial(n,m)), 0<=m<=n.
EXAMPLE
1;
1, 1;
1, 2, 1;
1, 1, 1, 1;
1, 2, 2, 2, 1;
1, 3, 4, 4, 3, 1;
1, 2, 1, 4, 1, 2, 1;
1, 1, 5, 3, 3, 5, 1, 1;
1, 2, 2, 2, 4, 2, 2, 2, 1;
1, 3, 4, 6, 2, 2, 6, 4, 3, 1;
1, 4, 5, 2, 6, 2, 6, 2, 5, 4, 1;
MAPLE
A178058 := proc(n, m)
A005811(binomial(n, m)) ;
end proc: # R. J. Mathar, Mar 10 2015
MATHEMATICA
GrayCodeList[k_] := Module[{b = IntegerDigits[k, 2], i},
Do[
If[b[[i - 1]] == 1, b[[i]] = 1 - b[[i]]],
{i, Length[b], 2, -1}
];
b
]
Table[Table[Apply[Plus, GrayCodeList[Binomial[n, m]]], {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
Cf. A143214.
Sequence in context: A228053 A031262 A047072 * A260971 A053258 A350738
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, May 18 2010
EXTENSIONS
Edited by R. J. Mathar, Mar 10 2015
STATUS
approved