The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143214 Gray code applied to Pascal's triangle: T(n,m)=GrayCode(binomial(n,m)). 4
 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 6, 5, 6, 1, 1, 7, 15, 15, 7, 1, 1, 5, 8, 30, 8, 5, 1, 1, 4, 31, 50, 50, 31, 4, 1, 1, 12, 18, 36, 101, 36, 18, 12, 1, 1, 13, 54, 126, 65, 65, 126, 54, 13, 1, 1, 15, 59, 68, 187, 130, 187, 68, 59, 15, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row sums are 1, 2, 5, 6, 19, 46, 58, 172, 235, 518, 790, ... . LINKS Table of n, a(n) for n=1..66. Eric Weisstein, Mathematica Notebook GrayCode.nb Eric Weisstein, Gray Code, MathWorld. FORMULA T(n,m) = A003188(binomial(n,m)). EXAMPLE 1; 1, 1; 1, 3, 1; 1, 2, 2, 1; 1, 6, 5, 6, 1; 1, 7, 15, 15, 7, 1; 1, 5, 8, 30, 8, 5, 1; 1, 4, 31, 50, 50, 31, 4, 1; 1, 12, 18, 36, 101, 36, 18, 12, 1; 1, 13, 54, 126, 65, 65, 126, 54, 13, 1; 1, 15, 59, 68, 187, 130, 187, 68, 59, 15, 1; MAPLE A143214 := proc(n, m) A003188(binomial(n, m)) ; end proc: # R. J. Mathar, Mar 10 2015 MATHEMATICA GrayCodeList[k_] := Module[{b = IntegerDigits[k, 2], i}, Do[ If[b[[i - 1]] == 1, b[[i]] = 1 - b[[i]]], {i, Length[b], 2, -1} ]; b ]; FromGrayCodeList[d_] := Module[{b = d, i, j}, Do[ If[Mod[Sum[b[[j]], {j, i - 1}], 2] == 1, b[[i]] = 1 - b[[i]]], {i, n = Length[d], 2, -1} ]; FromDigits[b, 2] ]; GrayCode[i_, n_] := FromDigits[BitXor @@@ Partition[Prepend[ IntegerDigits[i, 2, n], 0], 2, 1], 2] FromGrayCode[i_, n_] := FromDigits[BitXor[IntegerDigits[i, 2, n], FoldList[ BitXor, 0, Most[IntegerDigits[i, 2, n]]]], 2]; Clear[f, a, n, m, x]; a = Table[Table[Binomial[n, m], {m, 0, n}], {n, 0, 10}] b=Table[Flatten[Table[GrayCode[a[[n]][[m]], 10], {m, 1, n}]], {n, 1, Length[ a]}]; Flatten[%] (* program for a fractal picture modulo two: *) c = Table[Table[If[m <= n, Mod[b[[n]][[m]], 2], 0], {m, 1, Length[b]}], {n, 1, Length[b]}]; ListDensityPlot[c, Mesh -> False] (* The fractal pattern is the same for Pascal's triangle and the MacMahon numbers, A060187, but not for Eulerian numbers, A123125.*) CROSSREFS Cf. A123125, A060187. Sequence in context: A338878 A073166 A050169 * A300380 A300682 A300605 Adjacent sequences: A143211 A143212 A143213 * A143215 A143216 A143217 KEYWORD nonn,tabl AUTHOR Roger L. Bagula and Gary W. Adamson, Oct 20 2008 EXTENSIONS Edited by Michel Marcus and Joerg Arndt, Apr 22 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 07:12 EST 2023. Contains 367662 sequences. (Running on oeis4.)