login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143211
Triangle read by rows, T(n,k) = Fibonacci(n)*Fibonacci(k).
4
1, 1, 1, 2, 2, 4, 3, 3, 6, 9, 5, 5, 10, 15, 25, 8, 8, 16, 24, 40, 64, 13, 13, 26, 39, 65, 104, 169, 21, 21, 42, 63, 105, 168, 273, 441, 34, 34, 68, 102, 170, 272, 442, 714, 1156, 55, 55, 110, 165, 275, 440, 715, 1155, 1870, 3025, 89, 89, 178, 267, 445, 712, 1157, 1869
OFFSET
1,4
FORMULA
T(n, k) = Fibonacci(n)*Fibonacci(k).
T(n, k) = A127647 * A000012 * A127647, as infinite lower triangular matrices.
T(n, 1) = A000045(n).
T(n, n) = A007598(n).
Sum_{k=1..n} T(n, k) = A143212(n).
From G. C. Greubel, Jul 20 2024: (Start)
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*Fibonacci(n)*(Fibonacci(n-1) - (-1)^n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A024458(n). (End)
EXAMPLE
First few rows of the triangle:
1;
1, 1;
2, 2, 4;
3, 3, 6, 9;
5, 5, 10, 15, 25;
8, 8, 16, 24, 40, 64;
13, 13, 26, 39, 65, 104, 169;
21, 21, 42, 63, 105, 168, 273, 441;
...
MATHEMATICA
With[{F=Fibonacci}, Table[F[k]*F[n], {n, 12}, {k, n}]]//Flatten (* G. C. Greubel, Jul 20 2024 *)
PROG
(Magma) F:=Fibonacci; [F(n)*F(k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 20 2024
(SageMath)
def A143211(n, k): return fibonacci(n)*fibonacci(k)
flatten([[A143211(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Jul 20 2024
CROSSREFS
Cf. A000045 (left border), A007598 (right border), A127647,
Cf. A024458 (diagonal row sums), A143212 (row sums).
Sequence in context: A205678 A128590 A143228 * A361757 A209755 A131052
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, Jul 30 2008
STATUS
approved