OFFSET
1,4
LINKS
G. C. Greubel, Rows n = 1..50 of the triangle, flattened
FORMULA
T(n, k) = Fibonacci(n)*Fibonacci(k).
T(n, 1) = A000045(n).
T(n, n) = A007598(n).
Sum_{k=1..n} T(n, k) = A143212(n).
From G. C. Greubel, Jul 20 2024: (Start)
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*Fibonacci(n)*(Fibonacci(n-1) - (-1)^n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A024458(n). (End)
EXAMPLE
First few rows of the triangle:
1;
1, 1;
2, 2, 4;
3, 3, 6, 9;
5, 5, 10, 15, 25;
8, 8, 16, 24, 40, 64;
13, 13, 26, 39, 65, 104, 169;
21, 21, 42, 63, 105, 168, 273, 441;
...
MATHEMATICA
With[{F=Fibonacci}, Table[F[k]*F[n], {n, 12}, {k, n}]]//Flatten (* G. C. Greubel, Jul 20 2024 *)
PROG
(Magma) F:=Fibonacci; [F(n)*F(k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 20 2024
(SageMath)
def A143211(n, k): return fibonacci(n)*fibonacci(k)
flatten([[A143211(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Jul 20 2024
CROSSREFS
KEYWORD
AUTHOR
Gary W. Adamson, Jul 30 2008
STATUS
approved