login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143212
a(n) = Fibonacci(n) * (Fibonacci(n+2) - 1).
2
1, 2, 8, 21, 60, 160, 429, 1134, 2992, 7865, 20648, 54144, 141897, 371722, 973560, 2549421, 6675460, 17478176, 45761045, 119808150, 313668576, 821205937, 2149962768, 5628704256, 14736185425, 38579909330, 101003635304
OFFSET
1,2
COMMENTS
Lim_{n -> oo} a(n)/a(n-1) tends to phi^2.
a(n) = Product of sum of first n Fibonacci numbers and Fibonacci number(n). - Vladimir Joseph Stephan Orlovsky, Oct 13 2009
FORMULA
a(n) = A000045(n) * A000071(n+2).
a(n) = Sum_{k=1..n} A143211(n, k) (row sums of A143211).
From R. J. Mathar, Sep 06 2008: (Start)
G.f.: (1-x+x^2)/((1+x)*(1-3*x+x^2)*(1-x-x^2)).
a(n) = (-5*A000045(n+1) + 3*(-1)^n + 7*A001906(n+1) -3*A001906(n))/5. (End)
a(n) = Fibonacci(n)*Sum_{k=0..n} Fibonacci(k). - Paul Barry, Jan 05 2009
EXAMPLE
a(5) = 60 = F(5) * (F(7)-1) = 5*12.
a(5) = 60 = sum of row 5 terms of triangle A143211: (5 + 5 + 10 + 15 + 25).
MATHEMATICA
LinearRecurrence[{3, 1, -5, -1, 1}, {1, 2, 8, 21, 60}, 40] (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009 *)
Table[Fibonacci[n](Fibonacci[n+2]-1), {n, 30}] (* Harvey P. Dale, Dec 14 2012 *)
PROG
(Magma) [Fibonacci(n)*(Fibonacci(n+2)-1): n in [1..40]]; // G. C. Greubel, Jul 21 2024
(SageMath) [fibonacci(n)*(fibonacci(n+2)-1) for n in range(1, 41)] # G. C. Greubel, Jul 21 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jul 30 2008
STATUS
approved