login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143228
Triangle read by rows, T(n,k) = p(n) * p(k), where p(n) = the number of partitions of n, for 0 <= k <= n.
2
1, 1, 1, 2, 2, 4, 3, 3, 6, 9, 5, 5, 10, 15, 25, 7, 7, 14, 21, 35, 49, 11, 11, 22, 33, 55, 77, 121, 15, 15, 30, 45, 75, 105, 165, 225, 22, 22, 44, 66, 110, 154, 242, 330, 484, 30, 30, 60, 90, 150, 210, 330, 450, 660, 900, 42, 42, 84, 126, 210, 294, 462, 630, 924, 1260, 1764
OFFSET
0,4
FORMULA
T(n, 0) = A000041(n) (left border).
Sum_{k=0..n} T(n, k) = A143229(n) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A000041(n)*A087787(n). - G. C. Greubel, Aug 27 2024
EXAMPLE
First few rows of the triangle:
1;
1, 1;
2, 2, 4;
3, 3, 6, 9;
5, 5, 10, 15, 25;
7, 7, 14, 21, 35, 49;
11, 11, 22, 33, 55, 77, 121;
15, 15, 30, 45, 75, 105, 165, 225;
...
T(7,4) = 75 = p(7) * p(4) = 15 * 5.
MATHEMATICA
Table[PartitionsP[n]*PartitionsP[k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 27 2024 *)
PROG
(Magma)
A143228:= func< n, k | NumberOfPartitions(n)*NumberOfPartitions(k) >;
[A143228(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 27 2024
(SageMath)
def A143215(n, k): return number_of_partitions(n)*number_of_partitions(k)
flatten([[A143215(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 27 2024
CROSSREFS
Cf. A000041, A143229 (row sums).
Main diagonal gives: A001255.
Sequence in context: A303691 A205678 A128590 * A143211 A361757 A209755
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jul 31 2008
STATUS
approved