login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, T(n,k) = p(n) * p(k), where p(n) = the number of partitions of n, for 0 <= k <= n.
2

%I #15 Aug 28 2024 02:56:05

%S 1,1,1,2,2,4,3,3,6,9,5,5,10,15,25,7,7,14,21,35,49,11,11,22,33,55,77,

%T 121,15,15,30,45,75,105,165,225,22,22,44,66,110,154,242,330,484,30,30,

%U 60,90,150,210,330,450,660,900,42,42,84,126,210,294,462,630,924,1260,1764

%N Triangle read by rows, T(n,k) = p(n) * p(k), where p(n) = the number of partitions of n, for 0 <= k <= n.

%H G. C. Greubel, <a href="/A143228/b143228.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, 0) = A000041(n) (left border).

%F Sum_{k=0..n} T(n, k) = A143229(n) (row sums).

%F Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A000041(n)*A087787(n). - _G. C. Greubel_, Aug 27 2024

%e First few rows of the triangle:

%e 1;

%e 1, 1;

%e 2, 2, 4;

%e 3, 3, 6, 9;

%e 5, 5, 10, 15, 25;

%e 7, 7, 14, 21, 35, 49;

%e 11, 11, 22, 33, 55, 77, 121;

%e 15, 15, 30, 45, 75, 105, 165, 225;

%e ...

%e T(7,4) = 75 = p(7) * p(4) = 15 * 5.

%t Table[PartitionsP[n]*PartitionsP[k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Aug 27 2024 *)

%o (Magma)

%o A143228:= func< n,k | NumberOfPartitions(n)*NumberOfPartitions(k) >;

%o [A143228(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Aug 27 2024

%o (SageMath)

%o def A143215(n,k): return number_of_partitions(n)*number_of_partitions(k)

%o flatten([[A143215(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Aug 27 2024

%Y Cf. A000041, A143229 (row sums).

%Y Main diagonal gives: A001255.

%K nonn,tabl

%O 0,4

%A _Gary W. Adamson_, Jul 31 2008