OFFSET
1,5
COMMENTS
Equivalently, table T(n,k) = gcd(n,k)*(n+k-1)!/(n!*k!) read by antidiagonals. - Michael Somos, Jul 19 2002
Apparently, T(n,k)*gcd(C(n+1,k),n+1) = C(n+1,k). - Thomas Anton, Oct 24 2018
REFERENCES
H. Gupta, On a problem in parity, Indian J. Math., 11 (1969), 157-163. MR0260659
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..1275(Rows n=1..50,flattened)
H. Gupta, On a problem in parity, Indian J. Math., 11 (1969), 157-163. [Annotated scanned copy]
FORMULA
a(2n, n) = n-th Catalan number; see A000108.
Also T(n, k) = gcd(C(n, k), C(n+1, k)).
EXAMPLE
Triangle starts:
1;
1, 1;
1, 3, 1;
1, 2, 2, 1;
1, 5, 10, 5, 1;
1, 3, 5, 5, 3, 1;
...
MAPLE
a:=(n, k)->gcd(binomial(n, k), binomial(n, k-1)): seq(seq(a(n, k), k=1..n), n=1..12); # Muniru A Asiru, Oct 24 2018
MATHEMATICA
Table[GCD@@{Binomial[n, k], Binomial[n, k-1]}, {n, 20}, {k, n}]//Flatten (* Harvey P. Dale, Aug 06 2017 *)
PROG
(PARI) T(n, k)=if(n<1 || k<1, 0, gcd(n, k)*(n+k-1)!/n!/k!)
(PARI) T(n, k)=if(k<1 || k>n, 0, gcd(n+1, k)*binomial(n, k-1)/k) /* Michael Somos, Mar 03 2004 */
(GAP) Flat(List([1..12], n->List([1..n], k->Gcd(Binomial(n, k), Binomial(n, k-1))))); # Muniru A Asiru, Oct 24 2018
(Magma) /* As triangle */ [[Gcd(Binomial(n, k), Binomial(n, k-1)): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 25 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Offset set to 1 by R. J. Mathar, Dec 21 2010
STATUS
approved