

A178061


Number of distinct cycles without repeated edges on the multigraph consisting of two vertices joined by n edges.


2



0, 0, 1, 3, 9, 25, 120, 546, 4438, 28134, 308115, 2440405, 33237831, 314699463, 5119097074, 56345113020, 1065268609980, 13359512435356, 287786703606453, 4049825314169079, 97903924694681365, 1527478596708475845, 40946200336523631996, 701409698806896677158
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

Cycles have at least 2 edges, and the multigraph has no loops. For this sequence, a pair p,q of cycles is equivalent if the edgesequence of q can be formed by rotating and possibly reversing the edge sequence of p. Note that this definition ignores the starting vertex of a loop, which halves the number of distinct cycles of length >2.


LINKS

S. Donnelly, Table of n, a(n) for n=0..400
Eric W. Weisstein, Multigraph


FORMULA

a(n) = n*(n1)/2 + Sum_{k=4..n:2 divides k} (n!/((nk)!*2*k)).


EXAMPLE

for n = 4 there are 4 choose 2 = 6 distinct cycles of length 2, plus 3 of length 4: 0123, 0132, 0213. Hence a(4) = 6 + 3 = 9.


PROG

(Python)
def trfact_(n, k):
return reduce(lambda x, y: x*y, range(k+1, n+1), 1)
def choose_(n, k):
if k > n/2:
return trfact_(n, k)/trfact_(nk, 1)
else:
return trfact_(n, nk)/trfact_(k, 1)
def a_(n):
return choose_(n, 2) + sum(trfact_(n, nk)/(2*k) for k in range(4, n+1, 2))
(PARI) a(n) = n*(n1)/2 + sum(k=4, n, if(k%2==0, (n!/((nk)!*2*k)), 0)); \\ Joerg Arndt, Oct 11 2015


CROSSREFS

A263102 uses a more correct definition of cycle equivalence.
Sequence in context: A192371 A192465 A012771 * A120284 A074440 A006204
Adjacent sequences: A178058 A178059 A178060 * A178062 A178063 A178064


KEYWORD

easy,nonn,walk


AUTHOR

Simon R. Donnelly, May 18 2010


EXTENSIONS

First comment and program corrected by Simon R. Donnelly, Oct 10 2015
More terms from Joerg Arndt, Oct 11 2015


STATUS

approved



