The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192465 Constant term of the reduction by x^2->x+2 of the polynomial p(n,x)=1+x^n+x^(2n). 4
 3, 9, 25, 93, 353, 1389, 5505, 21933, 87553, 349869, 1398785, 5593773, 22372353, 89483949, 357924865, 1431677613, 5726666753, 22906579629, 91626143745, 366504225453, 1466016202753, 5864063412909, 23456250855425, 93824997829293 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. LINKS Table of n, a(n) for n=1..24. FORMULA Empirical G.f.: -x*(3*x-1)*(8*x^2-3)/((x-1)*(x+1)*(2*x-1)*(4*x-1)). [Colin Barker, Nov 12 2012] EXAMPLE The first four polynomials p(n,x) and their reductions are as follows: p(1,x)=1+x+x^2 -> 3+2x p(2,x)=1+x^2+x^4 -> 9+6x p(3,x)=1+x^3+x^6 -> 25+24x p(4,x)=1+x^4+x^8 -> 93+90x. From these, read A192465=(3,9,25,93,...) and A192466=(2,6,24,90,...) MATHEMATICA Remove["Global`*"]; q[x_] := x + 2; p[n_, x_] := 1 + x^n + x^(2 n); Table[Simplify[p[n, x]], {n, 1, 5}] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}] Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192465 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192466 *) Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192467 *) CROSSREFS Cf. A192232, A192466, A192464. Sequence in context: A246653 A192371 A363467 * A012771 A351891 A178061 Adjacent sequences: A192462 A192463 A192464 * A192466 A192467 A192468 KEYWORD nonn AUTHOR Clark Kimberling, Jul 01 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 8 03:07 EDT 2023. Contains 363157 sequences. (Running on oeis4.)