login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192464
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) = 1 + x^n + x^(2n).
4
2, 4, 7, 16, 38, 95, 242, 624, 1619, 4216, 11002, 28747, 75170, 196652, 514607, 1346880, 3525566, 9229063, 24160402, 63250168, 165586907, 433505384, 1134920882, 2971243731, 7778788418, 20365086100, 53316412567, 139584058864, 365435613974, 956722540271
OFFSET
1,1
COMMENTS
For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. The coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) = 1 + x^n + x^(2n) is 2*A051450.
FORMULA
G.f.: -x*(3*x^4-7*x^3-x^2+6*x-2)/((x-1)*(x^2-3*x+1)*(x^2+x-1)). - Colin Barker, Nov 12 2012
a(n) = 1 - Fibonacci(n) + Fibonacci(1+n) - Fibonacci(2n) + Fibonacci(1+2n). - Friedjof Tellkamp, Nov 22 2021
EXAMPLE
The first four polynomials p(n,x) and their reductions are as follows:
p(1,x) = 1 + x + x^2 -> 2 + 2x
p(2,x) = 1 + x^2 + x^4 -> 4 + 4x
p(3,x) = 1 + x^3 + x^6 -> 7 + 10x
p(4,x) = 1 + x^4 + x^8 -> 16 + 24x.
From these, read
A192464 = (2, 4, 7, 16, ...) and 2*A051450 = (2, 4, 10, 24, ...).
MATHEMATICA
Remove["Global`*"];
q[x_] := x + 1; p[n_, x_] := 1 + x^n + x^(2 n);
Table[Simplify[p[n, x]], {n, 1, 5}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
(* A192464 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
(* 2*A051450 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}]
(* A051450 *)
Table[1-Fibonacci[n]+Fibonacci[1+n]-Fibonacci[2n]+Fibonacci[1+2n], {n, 1, 29}]
(* Friedjof Tellkamp, Nov 22 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 01 2011
STATUS
approved