Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Nov 23 2021 02:28:32
%S 2,4,7,16,38,95,242,624,1619,4216,11002,28747,75170,196652,514607,
%T 1346880,3525566,9229063,24160402,63250168,165586907,433505384,
%U 1134920882,2971243731,7778788418,20365086100,53316412567,139584058864,365435613974,956722540271
%N Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) = 1 + x^n + x^(2n).
%C For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. The coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) = 1 + x^n + x^(2n) is 2*A051450.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-7,1,3,-1).
%F G.f.: -x*(3*x^4-7*x^3-x^2+6*x-2)/((x-1)*(x^2-3*x+1)*(x^2+x-1)). - _Colin Barker_, Nov 12 2012
%F a(n) = 1 - Fibonacci(n) + Fibonacci(1+n) - Fibonacci(2n) + Fibonacci(1+2n). - _Friedjof Tellkamp_, Nov 22 2021
%e The first four polynomials p(n,x) and their reductions are as follows:
%e p(1,x) = 1 + x + x^2 -> 2 + 2x
%e p(2,x) = 1 + x^2 + x^4 -> 4 + 4x
%e p(3,x) = 1 + x^3 + x^6 -> 7 + 10x
%e p(4,x) = 1 + x^4 + x^8 -> 16 + 24x.
%e From these, read
%e A192464 = (2, 4, 7, 16, ...) and 2*A051450 = (2, 4, 10, 24, ...).
%t Remove["Global`*"];
%t q[x_] := x + 1; p[n_, x_] := 1 + x^n + x^(2 n);
%t Table[Simplify[p[n, x]], {n, 1, 5}]
%t reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
%t x^y_?OddQ -> x q[x]^((y - 1)/2)};
%t t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}]
%t Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
%t (* A192464 *)
%t Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
%t (* 2*A051450 *)
%t Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}]
%t (* A051450 *)
%t Table[1-Fibonacci[n]+Fibonacci[1+n]-Fibonacci[2n]+Fibonacci[1+2n], {n, 1, 29}]
%t (* _Friedjof Tellkamp_, Nov 22 2021 *)
%Y Cf. A000045, A192232, A051450.
%K nonn,easy
%O 1,1
%A _Clark Kimberling_, Jul 01 2011