The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A349711 a(n) = Sum_{d|n} sopfr(d) * sopfr(n/d). 2
 0, 0, 0, 4, 0, 12, 0, 16, 9, 20, 0, 44, 0, 28, 30, 40, 0, 54, 0, 68, 42, 44, 0, 104, 25, 52, 36, 92, 0, 124, 0, 80, 66, 68, 70, 147, 0, 76, 78, 152, 0, 164, 0, 140, 108, 92, 0, 200, 49, 110, 102, 164, 0, 144, 110, 200, 114, 116, 0, 298, 0, 124, 144, 140, 130, 244, 0, 212, 138, 236, 0, 300, 0, 148, 140 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Dirichlet convolution of A001414 with itself. LINKS Antti Karttunen, Table of n, a(n) for n = 1..20000 FORMULA Dirichlet g.f.: ( zeta(s) * Sum_{p prime} p/(p^s-1) )^2. a(p^k) = (k^3-k)*p^2/6 = A000292(k-1)*p^2 for p prime. - Chai Wah Wu, Nov 28 2021 MAPLE b:= proc(n) option remember; add(i[1]*i[2], i=ifactors(n)[2]) end: a:= n-> add(b(d)*b(n/d), d=numtheory[divisors](n)): seq(a(n), n=1..75);  # Alois P. Heinz, Nov 26 2021 MATHEMATICA sopfr[1] = 0; sopfr[n_] := Plus @@ Times @@@ FactorInteger@n; a[n_] := Sum[sopfr[d] sopfr[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 75}] PROG (PARI) sopfr(n) = (n=factor(n))[, 1]~*n[, 2]; \\ A001414 a(n) = sumdiv(n, d, sopfr(d)*sopfr(n/d)); \\ Michel Marcus, Nov 26 2021 (Python) from itertools import product from sympy import factorint def A349711(n):     f = factorint(n)     plist, m = list(f.keys()), sum(f[p]*p for p in f)     return sum((lambda x: x*(m-x))(sum(d[i]*p for i, p in enumerate(plist))) for d in product(*(list(range(f[p]+1)) for p in plist))) # Chai Wah Wu, Nov 27 2021 CROSSREFS Cf. A000292, A001414, A034761, A318366, A349712. Sequence in context: A298706 A260490 A349712 * A167296 A147607 A174087 Adjacent sequences:  A349708 A349709 A349710 * A349712 A349713 A349714 KEYWORD nonn,look AUTHOR Ilya Gutkovskiy, Nov 26 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 29 10:15 EDT 2022. Contains 354912 sequences. (Running on oeis4.)